- PII
- 10.31857/S0320930X25020025-1
- DOI
- 10.31857/S0320930X25020025
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 2
- Pages
- 133-147
- Abstract
- Астрономический вестник. Исследования солнечной системы, Эволюционная история атмосферы молодого мини-нептуна HD 207496b
- Keywords
- Date of publication
- 20.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Ahrens T.J. Impact erosion of terrestrial planetary atmospheres // Ann. Rev. Earth and Planet. Sci. 1993. V. 21. P. 525–555. https://doi.org/10.1146/annurev.ea.21.050193.002521
- 2. Barros S.C.C., Demangeon O.D S., Armstrong D.J., Delgado Mena E., Acuña L., Fernández Fernández J., Deleuil M., Collins K.A., Howell S.B., Ziegler C., and 32 co-authors. The young mini-Neptune HD207496b that is either a naked core or on the verge of becoming one // Astron. and Astrophys. 2023. V. 673. Id. A4 (18 p.). https://doi.org/10.1051/0004-6361/202245741
- 3. Biersteker J.B., Schlichting H.E. Atmospheric mass-loss due to giant impacts: The importance of the thermal component for hydrogen-helium envelopes // Mon. Notic. Roy. Astron. Soc. 2019. V. 485. P. 4454–4463. https://doi.org/10.1093/mnras/stz738
- 4. Biersteker J.B., Schlichting H.E. Losing oceans: The effects of composition on the thermal component of impact-driven atmospheric loss // Mon. Notic. Roy. Astron. Soc. 2021. V. 501. P. 587–595. https://doi.org/10.1093/mnras/staa3614
- 5. Cameron A.G.W. Origin of the atmospheres of the terrestrial planets // Icarus. 1983. V. 56. P. 195–201. https://doi.org/10.1016/0019-1035 (83)90032-5
- 6. Chamberlain J.W. Upper atmospheres of the planets // Astrophys. J. 1962. V. 136. P. 582–586. https://doi.org/10.1086/147409
- 7. Chen H., Rogers L.A. Evolutionary analysis of gaseous sub-Neptune-mass planets with MESA // Astrophys. J. 2016. V. 831. Id. 180 (18 p.). https://doi.org/10.3847/0004-637X/831/2/180
- 8. Cohen O., Kashyap V.L., Drake J.J., Sokolov I.V., Gombosi T.I. The dynamics of stellar coronae harboring hot Jupiters. II. A space weather event on a hot Jupiter // Astrophys. J. 2011. V. 738. Id. 166 (13 p.). https://doi.org/10.1088/0004-637X/738/2/166
- 9. Erkaev N.V., Kulikov Y., Lammer H., Selsis F., Langmayr D., Jaritz G.F., Biernat H.K. Roche lobe effects on the atmospheric loss from “hot Jupiters” // Astron. and Astrophys. 2007. V. 472. P. 329–334. https://doi.org/10.1051/0004-6361:20066929
- 10. Freedman R.S., Marley M.S., Lodders K. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures // Astrophys. J. Suppl. 2008. V. 174. P. 50–74. https://doi.org/10.1086/521793
- 11. Fulton B.J., Petigura E.A., Howard A.W., Isaacson H., Marcy G.W., Cargile P.A., Hebb L., Weiss L.M., Johnson J.A., Morton T.D., and 3 co-authors. The California-Kepler Survey. III. A gap in the radius distribution of small planets // Astrophys. J. 2017. V. 154. Id. 109 (19 p.). https://doi.org/10.3847/1538-3881/aa80eb
- 12. Ginzburg S., Schlichting H.E., Sari R. Super-Earth atmospheres: Self-consistent gas accretion and retention // Astrophys. J. 2016. V. 825. Id. 29 (12 p.). https://doi.org/10.3847/0004-637X/825/1/29
- 13. Ginzburg S., Schlichting H.E., Sari R. Core-powered mass loss and the radius distribution of small exoplanets // Mon. Notic. Roy. Astron. Soc. 2018. V. 476. P. 759–765. https://doi.org/10.1093/mnras/sty290
- 14. Gupta A., Schlichting H.E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: The core-powered mass-loss mechanism // Mon. Notic. Roy. Astron. Soc. 2019. V. 487. P. 24–33. https://doi.org/10.1093/mnras/stz1230
- 15. Genda H., Abe Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans // Nature. 2005. V. 433. P. 842–844. https://doi.org/10.1038/nature03360
- 16. Hazra G., Vidotto A.A., Carolan S., Villarreal D’Angelo C., Manchester W. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b // Mon. Notic. Roy. Astron. Soc. 2022. V. 509. P. 5858–5871. https://doi.org/10.1093/mnras/stab3271
- 17. Johnson R.E., Combi M.R., Fox J.L., Ip W.-H., Leblanc F., McGrath M.A., Shematovich V.I., Strobel D.F., Waite J.H., Jr. Exospheres and atmospheric escape // Space Sci. Rev. 2008. V. 139. P. 355–397. https://doi.org/10.1007/s11214-008-9415-3
- 18. Johnstone C.P., Bartel M., Güdel M. The active lives of stars: A complete description of the rotation and XUV evolution of F, G, K, and M dwarfs // Astron. and Astrophys. 2021. V. 649. Id. A96 (26 p.). https://doi.org/10.1051/0004-6361/202038407
- 19. Kasting J.F., Pollack J.B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen // Icarus. 1983. V. 53. P. 479–508. https://doi.org/10.1016/0019-1035 (83)90212-9
- 20. Kasting J.F., Whitmire D.P., Reynolds R.T. Habitable zones around main sequence stars // Icarus. 1993. V. 101. P. 108–128. https://doi.org/10.1006/icar.1993.1010
- 21. King G.W., Wheatley P.J., Salz M., Bourrier V., Czesla S., Ehrenreich D., Kirk J., Lecavelier des Etangs A., Louden T., Schmitt J., Schneider P.C. The XUV environments of exoplanets from Jupiter-size to super-Earth // Mon. Notic. Roy. Astron. Soc. 2018. V. 478. P. 1193–1208. https://doi.org/10.1093/mnrasl/slz003
- 22. Kopparapu R.K., Ramirez R., Kasting J.F., Eymet V., Robinson T.D., Mahadevan S., Terrien R.C., Domagal-Goldman Sh., Meadows V., Deshpande R. Habitable zones around main-sequence stars: New estimates // Astrophys. J. 2013. V. 765. Id. 131 (16 p.). https://doi.org/10.1088/0004-637X/765/2/131
- 23. Kubyshkina D.I., Fossati L. Extending a grid of hydrodynamic planetary upper atmosphere models // Res. Notes AAS. 2021. V. 5. Id. 74. https://doi.org/ 10.3847/2515-5172/abf498
- 24. Lammer H., Selsis F., Ribas I., Guinan E.F., Bauer S.J., Weiss W.W. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating // Astrophys. J. Lett. 2003. V. 598. P. L121–L124. https://doi.org/10.1086/380815
- 25. Linder E.F. Mordasini C., Mollière P., Marleau G.-D., Malik M., Quanz S.P., Meyer M.R. Evolutionary models of cold and low-mass planets: cooling curves, magnitudes, and detectability // Astron. and Astrophys. 2019. V. 623. Id. A85 (24 p.). https://doi.org/10.1051/0004-6361/201833873
- 26. Madhusudhan N., Piette A.A.A., Constantinou S. Habitability and biosignatures of hycean worlds // Astrophys. J. 2021. V. 918. P. 1–10. https://doi.org/10.3847/1538-4357/abfd9c
- 27. Marov M.Ya., Shematovich V.I., Bisikalo D.V. Nonequilibrium processes in the planetary and cometary atmospheres. A kinetic approach to modeling // Space Sci. Rev. 1996. V. 76. P. 1–202. https://doi.org/10.1007/BF00240583
- 28. Micela G., Cecchi-Pestellini C., Colombo S., Locci D., Petralia A. Planet interactions at a young age // Astron. Nachrichten. 2022. V. 343. Id. e10097. https://doi.org/10.1002/asna.20210097
- 29. Misener W., Schlichting H.E. To cool is to keep: residual H/He atmospheres of super-Earths and sub-Neptunes // Mon. Notic. Roy. Astron. Soc. 2021. V. 503. P. 5658–5674. https://doi.org/10.1093/mnras/stab895
- 30. Modirrousta-Galian D., Korenaga J. The three regimes of atmospheric evaporation for super-Earths and sub-Neptunes // Astrophys. J. 2023. V. 943. Id. 11 (27 p.). https://doi.org/10.3847/1538-4357/ac9d34
- 31. Mol Lous M., Helled R., Mordasini C. Potential long-term habitable conditions on planets with primordial H-He atmospheres // Nature Astron. 2022. V. 6. P. 819–828. https://doi.org/10.1038/s41550-022-01699-8
- 32. Mordasini C. Planetary evolution with atmospheric photoevaporation. I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes // Astron. and Astrophys. 2020. V. 38. Id. A52. https://doi.org/10.1051/0004-6361/201935541
- 33. Mordasini C., Alibert Y., Georgy C., Dittkrist K.-M., Klahr H., Henning T. Characterization of exoplanets from their formation. II. The planetary mass-radius relationship // Astron. and Astrophys. 2012. V. 547. Id. A112 (36 p.). https://doi.org/10.1051/0004-6361/201118464
- 34. Murray-Clay R.A., Chiang E.I., Murray N. Atmospheric escape from hot Jupiters // Astrophys. J. 2009. V. 693. P. 23–42. https://doi.org/10.1088/0004-637X/693/1/23
- 35. Otegi J.F., Bouchy F., Helled R. Revisited mass–radius relations for exoplanets below 120 M⊕ // Astron. and Astrophys. 2020. V. 634. Id. A43. https://doi.org/10.1051/0004-6361/201936482
- 36. Owen J.E. Atmospheric escape and the evolution of close-in exoplanets // Ann. Rev. Earth and Planet. Sci. 2019. V. 47. P. 67–90. https://doi.org/10.1146/annurev-earth-053018-060246
- 37. Owen J.E., Mohanty S. Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres // Mon. Notic. Roy. Astron. Soc. 2016. V. 459. P. 4088–4108. https://doi.org/10.1093/mnras/stw959
- 38. Owen J.E., Schlichting H.E. Mapping out the parameter space for photoevaporation and core-powered mass-loss // Mon. Notic. Roy. Astron. Soc. 2024. V. 528. P. 1615–1629. https://doi.org/10.1093/mnras/stad3972
- 39. Owen J.E., Wu Y. Kepler planets: A tale of evaporation // Astrophys. J. 2013. V. 775. Id. 105. https://doi.org/10.1088/0004-637X/775/2/105
- 40. Pizzolato N., Maggio A., Micela G., Sciortino S., Ventura P. The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs // Astron. and Astrophys. 2003. V. 397. P. 147–157. https://doi.org/10.1051/0004-6361:20021560
- 41. Schlichting H.E., Sari R., Yalinewich A. Atmospheric mass loss during planet formation: The importance of planetesimal impacts // Icarus. 2015. V. 247. P. 81–94. https://doi.org/10.1016/j.icarus.2014.09.053
- 42. Shematovich V.I., Marov M.Ya. Escape of planetary atmospheres: Physical processes and numerical models // Physics Uspekhi. 2018. V. 61. P. 217–246. https://doi.org/10.3367/UFNe.2017.09.038212
- 43. Shizgal B.D., Arkos G.G. Nonthermal escape of the atmospheres of Venus, Earth, and Mars // Rev. Geophys. 1996. V. 34. P. 483–505. https://doi.org/10.1029/96RG02213
- 44. Simonova A.A., Shematovich V.I. Approximate calculation of the thermal loss of the atmosphere of a hot exoplanet in a low orbit with taking into account the ellipticity // Astrophys. Bull. 2023. V. 78. P. 214–221. https://doi.org/10.1134/S1990341323020098
- 45. Tian F. Atmospheric escape from Solar system terrestrial planets and exoplanets // Ann. Rev. Earth and Planet. Sci. 2015. V. 43. P. 459–476. https://doi.org/10.1146/annurev-earth-060313-054834
- 46. Watson A.J., Donahue T.M., Walker J.C.G. The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus // Icarus. 1981. V. 48. P. 150–166. https://doi.org/10.1016/0019-1035 (81)90101-9
- 47. Wright N.J., Drake J.J., Mamajek E.E., Henry G.W. The stellar-activity-rotation relationship and the evolution of stellar dynamos // Astrophys. J. 2011. V. 743. Id. 48 (16 p.). https://doi.org/10.1088/0004-637X/743/1/48
- 48. Wright N J., Newton E.R., Williams P.K.G., Drake J.J., Yadav R.K.The stellar rotation-activity relationship in fully convective M dwarfs // Mon. Notic. Roy. Astron. Soc. 2018. V. 479. P. 2351–2360. https://doi.org/10.1093/mnras/sty1670
- 49. Zahnle K.J., Kasting J.F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus // Icarus. 1986. V. 68. P. 462–480. https://doi.org/10.1016/0019-1035 (86)90051-5