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Обсуждается ключевая роль семейства инвариантов гидромагнитной спиральности в связи с ге-
нерацией и  поддержанием магнитных полей в  геофизическом и  астрофизическом контекстах. 
Влияние сжимаемости и вращения на турбулентный перенос вещества в спиральных гидромаг-
нитных течениях исследуется с помощью феноменологического подхода при очень высоких чис-
лах Рейнольдса. Флуктуирующие эффекты, входящие при этом в осредненные МГД-уравнения 
через их корреляционные вклады и  представляющие собой гидромагнитное турбулентное на-
пряжение, турбулентную электродвижущую силу и  ряд других корреляционных функций, мо-
делируются с  помощью линейных замыкающих соотношений (при отсутствии отражательной 
симметрии мелкомасштабных движений) и дифференциальных уравнений для четырех спираль-
ных идентификаторов хиральной турбулентности (дескрипторов), которыми являются: полная 
турбулентная энергия плазмы, турбулентная поперечная спиральность, турбулентная остаточ-
ная энергия и турбулентная остаточная спиральность. Считается, что модельные уравнения для 
этих дескрипторов, объединенные со сжимаемыми МГД-уравнениями среднего поля, позволяют 
наиболее полно сконструировать самосогласованную модель турбулентного динамо. Конечной 
целью предпринятого исследования является разработка моделей спиральной гидромагнитной 
турбулентности, способных эффективно работать в гиперзвуковом режиме.

Ключевые слова: хиральная астрофизическая турбулентность, эффекты сжимаемости и  враще-
ния, магнитная, поперечная и остаточная спиральности, теория турбулентного динамо 
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ВВЕДЕНИЕ

Магнитные поля широко наблюдаются в ви-
димой Вселенной на всех уровнях, будь то плане-
тарный, звездный, галактический или межгалак-
тический. За последние пять десятилетий теории 
турбулентного динамо среднего поля и числен-
ное моделирование несжимаемой гидромаг-
нитной турбулентности получили широкое раз-
витие в  ряде областей исследований, включая 
изучение гео- и  планетарного магнетизма, сол-
нечной и звездной магнитной активности, меж-
планетных и  межзвездных магнитных полей, 
космических магнитных полей и др. Считается, 

что создание и  поддержание магнитных полей 
во  многом объясняется действием динамо-ма-
шины, связанной с  отсутствием отражательной 
симметрии фоновой турбулентности, другими 
словами, с  хиральностью турбулентных движе-
ний электропроводной жидкости. Простейшей 
количественной мерой хиральности является 
неисчезающая спиральность фоновой турбу-
лентности, которая, в  частности, ответственна 
за  генерацию и  поддержание крупномасштаб-
ных магнитных полей, обладающих собствен-
ной магнитной спиральностью. Теория спи-
ральной турбулентности в  электропроводной 
среде успешно используется в настоящее время 
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для объяснения крупномасштабных динамиче-
ских явлений, связанных с  эволюцией астро- 
и геофизических объектов различной природы, 
например, с галактическими газовыми дисками, 
с аккреционными дисками, с индуцированными 
мелкомасштабной турбулентностью магнитны-
ми полями в галактике, динамическими процес-
сами в  конвективной зоне Солнца и  во внеш-
нем ядре Земли и т.д. (см., например, Yoshizawa, 
1984; 1990; 1996; 1998; Yoshizawa, Yokoi, 1993; 
Yokoi, Yoshizawa, 1993; Yokoi, 1996; 2011; 2013; 
2018; Yoshizawa и  др., 1999a,b; 2000; Oughton, 
Prandi, 2000; Matthaeus и  др., 2004; Zhou и  др., 
2004; Sur, Brandenburg, 2009). Представителями 
сферических космических объектов являются, 
например, Земля и Солнце, а цилиндрических – 
вращающиеся аккреционные диски вокруг 
астрофизических объектов большой массы.

В недавнем обзоре (Kolesnichenko, 2024), по-
священном исследованию разнообразных дис-
сипативных вихревых (когерентных) структур 
в немагнитной сильно турбулентной жидкости, 
рассматривались основные динамические ха-
рактеристики спиральной гидродинамической 
турбулентности, которые определяют эволюцию 
структурных параметров газа в  турбулентных 
астрофизических дисках. С  фактической точки 
зрения наиболее богата подобными диссипа-
тивными структурами развитая турбулентность 
в  термодинамически открытой системе, когда 
при очень высоких числах Рейнольдса Re (опре-
деляемых интегральным масштабом L, харак-
теристической скоростью u и  кинематической 
вязкостью ν среды) нарушаются различные сим-
метрии (пространственные переносы, сдвиги 
по  времени, вращения, галилеевы и  масштаб-
ные преобразования и  др.), допускаемые урав-
нениями Навье–Стокса и  соответствующими 
краевыми условиями. Однако в тех случаях, ког-
да турбулентное течение свободно от внешнего 
принуждения (связанного, например, с  круп-
номасштабным сдвигом скорости при враще-
нии диска), развитая турбулентность в  пределе 
больших чисел Рейнольдса имеет, как известно, 
тенденцию восстанавливать (в статистическом 
смысле) нарушенные симметрии вдали от  гра-
ниц течения. 

Вместе с  тем существует хиральная турбу-
лентность, которая и при очень больших числах 
Рейнольдса не восстанавливает нарушенную от-
ражательную симметрию (так называемый закон 
четности) поля пульсационных скоростей в слу-
чае преобразования координат x x→ − . Приме-
ром такой турбулентности является, в частности, 

пульсирующее поле скоростей в  конвективной 
зоне астрофизического немагнитного аккре-
ционного диска: средние свойства этого поля 
не  остаются инвариантными при зеркальном 
отражении в  его экваториальной плоскости. 
Подобная турбулентность, как известно, назы-
вается гиротропной (или спиральной от англий-
ского слова “helicity”) и возникает под влиянием 
массовых сил с  псевдовекторными свойствами 
(например, силы Кориолиса, магнитного поля 
и т.п.). Впервые на важность влияния спираль-
ности локализованных вихревых возмущений 
на  эволюцию трехмерной несжимаемой турбу-
лентности обратил внимание Moffatt (1969), ко-
торый и  нашел связанный с  ней интегральный 
инвариант H tK ( ) :x u, � � �� ����   – кинетическую 
спиральность, представляющую собой пра-
во- и  левостороннюю закрутку силовых линий 
вихревого поля скоростей, связанную с флукту-
ационным движением турбулентной жидкости 
(другими словами, являющуюся количествен-
ной мерой нарушения зеркальной симметрии 
потока или топологических свойств мелкомас-
штабных флуктуаций).

Кинетическая спиральность  – это псев-
доскаляр, который не  является положительно 
определенной величиной и меняет знак при пе-
реходе от левой к правой системе координат (или 
наоборот). Следует отметить, что здесь и  далее 
везде в  качестве операции осреднения исполь-
зуется статистико-математическое осреднение 
по ансамблю возможных реализаций случайных 
гидромагнитных полей (см., например, Монин, 
Яглом, 1996). Напомним также, что только бла-
годаря введению в рассмотрение так называемой 
магнитной перекрестной (кросс) спиральности 
W := 〈 ′ ⋅ ′〉−µ0

1 u B  для описания гидромагнитной 
турбулентности, не  обладающей зеркальной 
симметрией, удалось объяснить механизм тур-
булентного динамо в  астрофизике (так назы-
ваемый α-эффект), отвечающий за  генерацию 
и  поддержание крупномасштабных магнитных 
полей B у планет, звезд и галактик (см. Hamba, 
1992; Yoshizawa, Yokoi, 1993).

Заметим, что развитая турбулентность 
во вращающемся звездном аккреционном диске 
имеет спиральный характер. Это связано с тем, 
что мелкомасштабное пульсационное поле ско-
ростей ′u  при наличии вращения дискового 
вещества с  постоянной угловой скоростью ©0 
(аксиальный вектор) и  анизотропии, вызван-
ной, например, воздействием поля силы тяже-
сти g или поля вертикального градиента тем-
пературы ∇θ (полярные векторы), не  обладает 
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отражательной симметрией относительно эква-
ториальной плоскости диска, т.е. относительно 
преобразования z z→ − . Последнее означает, 
что в  таком анизотропном мелкомасштабном 
пульсационном поле скоростей вихревые лево-
вращательные движения в  совокупности могут 
быть более вероятными, чем правовращатель-
ные движения, или наоборот. 

Важнейший аспект теории спиральной ги-
дромагнитной турбулентности связан с  ис-
следованием взаимодействия между гидро-
динамической турбулентностью и  магнитной 
турбулентностью при наличии внешнего и  на-
веденного магнитных полей. Турбулентные по-
токи вещества и энергии возникают в результате 
неоднородного пространственного распределе-
ния плотности, температуры, энергии, скорости 
и  т.п. в  различных физических процессах, та-
ких как диффузия, конвекция, излучение и т.д. 
В  гидромагнитных (МГД) течениях существует 
сложное взаимодействие между осредненны-
ми и флуктуирующими плотностью, скоростью 
и  магнитным полем. Даже однородное магнит-
ное поле сильно изменяет динамические свой-
ства гидромагнитной турбулентности, в отличие 
от  чисто гидродинамической турбулентности, 
в эволюции которой, как известно, доминирует 
вихревое (пульсационное) искажение однород-
ного поля скоростей. 

Еще одним из актуальных аспектов, требую-
щим особого рассмотрения при изучении струк-
турных свойств газообразных астрофизических 
объектов, является учет сверхзвукового эффекта 
сжимаемости турбулентной среды, на который, 
к  сожалению, до  последнего времени мало об-
ращалось внимания. Однако в  астрофизиче-
ских явлениях часто приходится сталкиваться 
с  ударными волнами, которые генерируются 
в турбулентных средах и влияют на формирова-
ние вихревой структуры в гидромагнитной тур-
булентности, причем уровень и  анизотропия 
турбулентных флуктуаций резко возрастают 
в области ударных волн. Заметим, что даже в ги-
дродинамической турбулентности взаимодей-
ствие ударной волны и турбулентности является 
одной из наиболее сложных проблем моделиро-
вания турбулентности. Эффекты сжимаемости 
заслуживают особого внимания еще и  потому, 
что именно сжимаемость турбулентной плазмы 
может приводить как к усилению, так и к пода-
влению генерации мелкомасштабных пульсаций 
структурных параметров космической среды 
при их взаимодействии с  осредненным гидро-
динамическим полем и  внешним магнитным 

полем (Liou и  др., 1995; Yoshizawa и  др., 1997; 
Adumitroaie и др., 1999; Yokoi, 2018). Кроме того, 
хорошо известно, что одной из  наиболее важ-
ных проблем, связанных с  сильно сжимаемой 
МГД-турбулентностью, является динамическое 
звездообразование. Считается, что скорость 
звездообразования контролируется формирова-
нием молекулярных облаков и  поддерживается 
сверхзвуковой турбулентностью во  взаимодей-
ствии с гравитацией и вращением. 

Наконец, при моделировании эволюции ра-
диационно-доминирующих областей аккреци-
онных геометрически тонких звездных дисков 
необходимо также принимать во  внимание на-
личие жесткого рентгеновского излучения в го-
рячих коронах, окружающих диски, в  которых 
часто преобладает радиационное давление. 

Таким образом, построение модели, отве-
чающей всем перечисленным требованиям, яв-
ляется одной из сложных задач в исследовании 
сжимаемой гидромагнитной турбулентности. 
К  сожалению, в  настоящее время какой-либо 
строгой феноменологической теории сверхзву-
ковой спиральной гидромагнитной турбулент-
ности не существует. Вместе с тем только теория 
подобной турбулентности позволяет глубже по-
нять многие динамические крупномасштабные 
явления в  астро- и  геофизике, например, осо-
бенности генерации дополнительного магнит-
ного поля при движении сжимаемой электро-
проводной жидкости, перенос углового момента 
дискового вещества на периферию диска (в ос-
новном под действием турбулентного магнитно-
го поля) или выделение тепла в нем при аккре-
ции и т.п. 

В связи со  сказанным, в  представленной 
работе сделана попытка конструирования фе-
номенологической модели спиральной ги-
дромагнитной турбулентности, учитывающей 
влияние сжимаемости и  вращения на  процесс 
генерации турбулентности в МГД-системах при 
использовании осредненных скорости, магнит-
ного поля, плотности и температуры. При этом 
предполагается, что эволюция турбулентности 
обусловливается и  приводит к  квазистацио-
нарному состоянию самой спиральной турбу-
лентностью, независимо от  ее происхождения 
(см., например, Hawley, Balbus,1991). В  данной 
работе, при конструировании феноменологи-
ческой модели, турбулентное движение плазмы 
раскладывается на осредненную составляющую 
и  пульсационную составляющую, состоящую 
из  случайных суперпозиций взаимодействую-
щих между собой мелкомасштабных волновых 
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мод и  образующую так называемую турбулент-
ную надструктуру. Пульсационные эффекты, 
входящие при этом в  осредненные МГД-урав-
нения через их корреляционные вклады, пред-
ставляют собой разнообразные турбулентные 
потоки, турбулентную электродвижущую силу 
и некоторые другие корреляционные характери-
стики, для которых необходимо иметь замыка-
ющие соотношения. В работе все турбулентные 
потоки моделируются вблизи квазиравновесно-
го состояния линейными соотношениями (яв-
ляющимися функциями термодинамических 
сил), т.е. связаны с  градиентами осредненных 
структурных параметров через кинетические 
транспортные коэффициенты, которые выра-
жаются в  терминах корреляционных функций. 
В  случае отсутствия отражательной симметрии 
мелкомасштабных движений электропроводной 
жидкости эти коэффициенты зависят от  ряда 
объемных идентификаторов (дескрипторов) 
спиральной МГД-турбулентности, которыми 
являются: турбулентная энергия вещества плаз-
мы b : /� � �� �u 2 2 , турбулентная магнитная энер-
гия � � � �bM : /B

2
02��  турбулентная попереч-

ная (кросс) спиральность W = 〈 ′′ ⋅ ′ 〉u B / ρ µ 0  
(корреляция между флуктуациями скорости 
и  магнитного поля), остаточная энергия тур-
булентности K b bR M:= 〈 〉 − 〈 〉 (разница между 
гидродинамической и  магнитной энергиями 
турбулентности) и, наконец, турбулентная оста-
точная спиральность H � � � � � � �� � ����� 1B j u��  
(разница между токовой HM и кинетической HK
спиральностями (Yoshizawa, 1985). 

Подобные дескрипторы, используемые в ли-
тературе (см., например, Yoshizawa, Yokoi, 1993; 
Yoshizawa и др., 2004; Yokoi и др., 2008) для моде-
лирования динамических свойств несжимаемой 
астро- и геофизической турбулентности, играют 
ключевую роль в плазменных спиральных круп-
номасштабных явлениях (в частности таких, как 
турбулентное динамо). Заметим, что эффект 
динамо-машины возникает в  турбулентных 
потоках при огромных числах Рейнольдса (на-
пример, во внешнем ядре Земли Re( )108 , а в 
галактиках Re ( )1011 ), когда мелкомасштаб-
ные флуктуации скорости и  магнитного поля 
приводят к  генерации дополнительных (наве-
денных) магнитных полей, вызывающих элек-
трические токи проводимости j , параллельные 
(или антипараллельные) вектору магнитного 
поля B, а также влияют на поле скорости через 
силу Лоренца. Для указанных дескрипторов 
в  работе приведены модельные эволюционные 

уравнения, которые, наряду с  осредненными 
МГД-уравнениями, должны решаться численно 
(одновременно и  самосогласованным образом) 
при наиболее адекватном моделировании спи-
ральных явлений в турбулентной электропрово-
дной жидкости. 

Таким образом, в  данной работе для случая 
сжимаемой магнитной гидродинамики полу-
чена замкнутая система гидромагнитных урав-
нений масштаба среднего движения, для кото-
рой спиральные эффекты существенно влияют 
на динамику происходящих в ней гидродинами-
ческих и электродинамических процессов. При 
этом важно отметить, что при разработке модели 
сжимаемой среды нами, наряду с традиционным 
рейнольдсовским осреднением (или осреднени-
ем по ансамблю возможных реализаций) МГД-у-
равнений, систематически было использовано 
массово-взвешенное осреднение Фавра (Favre, 
1969), позволяющее в значительной степени как 
упростить структуру осредненных гидромагнит-
ных уравнений, так и  выявить сверхзвуковые 
эффекты в  развитой турбулентности при боль-
ших числах Рейнольдса, важные в зависимости 
от степени сжимаемости плазмы. С целью наи-
более наглядного физического истолкования от-
дельных составляющих энергетического баланса 
вещества плазмы и флуктуирующего магнитного 
поля в работе приведены также различные урав-
нения энергетического баланса, позволяющие 
отслеживать возможные механизмы перекачки 
энергии из  одной формы в  другую, например, 
гравитационной и кинетической энергии осред-
ненного движения в  магнитную энергию и  т.п. 
Особое внимание уделяется при этом турбулент-
ной электродвижущей силе, которая играет цен-
тральную роль в появлении эффекта турбулент-
ного динамо. 

Следует также отметить, что в астро- и гео-
физических приложениях турбулентные дви-
жения исследуются с  помощью нескольких 
уровней моделирования. В  простейшем слу-
чае турбулентные потоки моделируются с  по-
мощью алгебраического градиентно-диффу-
зионного приближения, которое наиболее 
широко используется в инженерных, геофизи-
ческих и  астрофизических областях (см. Ma-
rov, Kolesnichenko, 2013). Вместе с  тем гради-
ентно-транспортная модель, предполагающая 
локальность турбулентного переноса в  про-
странстве и  во времени и  основанная на  про-
стых градиентных соотношениях, во  многих 
случаях не  является достаточно эффективной. 
В  частности, в  конвективной турбулентности 
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при высоких числах Рэлея реализация нело-
кальных эффектов, обусловленных шлейфами 
и термами, является очень важной (Yokoi, 2018). 
Кроме этого, коэффициенты переноса получа-
ются, как правило, путем анализа размерности, 
как это имеет место в теории длины смешива-
ния. Для того чтобы получить более адекватную 
модель замыкания необходимо иметь более об-
щие выражения для корреляций турбулентно-
сти, относящихся к уравнениям среднего поля. 
В  работах (Yoshizawa, 1984; 1990; 1996; Yokoi, 
2013) был разработан аналитический подход 
к  замыканию осредненных МГД-уравнений 
(базирующийся на точных математических со-
отношениях в  пространстве волновых чисел), 
который позволяет получить теоретические вы-
ражения (без учета эффектов сжимаемости) для 
неизвестных турбулентных корреляций в силь-
но нелинейных и неоднородных электропрово-
дных жидкостях. В  данной работе с  помощью 
аналогичного подхода к  замыканию, основан-
ному в  конечном счете на  модельных диффе-
ренциальных уравнениях второго порядка для 
дескрипторов, предложена замкнутая система 
уравнений для сильно сжимаемой МГД-турбу-
лентности. 

Заметим, что используемое в работе прибли-
жение к моделированию гидромагнитной турбу-
лентности является в определенной степени раз-
витием ранее разработанного автором подхода, 
основанного на  надежных термодинамических 
концепциях (см., например, Kолесниченко, 
2011; 2014a; 2014б; 2017; Kolesnichenko, Marov, 
2007; 2008). 

ОСРЕДНЕННЫЕ МГД-УРАВНЕНИЯ 
ДЛЯ ТУРБУЛЕНТНОГО ДВИЖЕНИЯ 

СЖИМАЕМОЙ ПЛАЗМЫ

Средневзвешенное осреднение Фавра

В турбулентной космической плазме гидро-
динамическая скорость, температура, плотность 
и электромагнитные поля являются флуктуиру-
ющими величинами. Как известно (см., Favre, 
1969), при построении модели развитой турбу-
лентности в сжимаемой среде удобно использо-
вать наряду с обычными (осредненными по Рей-
нольдсу) средними значениями ( )x,t  некоторых 
гидромагнитных величин ( )x,t  (таких как элек-
тромагнитное поле, плотность тока, массовая 
плотность вещества, давление, молекулярные 
потоки переноса массы, количества движения 
и  энергии) так называемые средневзвешенные 

значения 〈 〉 ( )x,t  (средние по  Фавру), для не-
которых других структурных параметров (на-
пример, температуры, внутренней энергии, эн-
тропии, гидродинамической скорости и  т.п.), 
задаваемые соотношением 〈 〉 = : /ρ ρ. Таким 
образом, для обозначения осредненных значе-
ний физических величин далее используются 
два символа: черта сверху означает осреднение 
Рейнольдса по  ансамблю возможных реализа-
ций (времени и/или пространству), в  то время 
как угловые скобки означают средневзвешенное 
осреднение по  Фавру. Двойной штрих исполь-
зуется далее для обозначения мелкомасштабных 
флуктуаций на фоне среднего течения ′′ ( )x,t  тех 
величин ( )x,t , которые осреднены по  Фавру, 
  ( ) =x,t 〈 〉 + ′′, ( ′′ ≠ 0). Приведем здесь упо-
требляемые далее в  статье некоторые свойства 
средневзвешенного осреднения, которые легко 
выводятся из  его определения и  известных по-
стулатов осреднения по Рейнольдсу (см., напри-
мер, Колесниченко, Маров, 2009): 

〈 〉 〈 〉 = , 〈 〉 = , ′ ′ ′ ′′ρ ρ = ,  
〈 〉 − = 〈 ′〉 = − ′′    , ′′= ′′+ ′   =, ρ ¢¢ = ,0   

′′ − ′ ′′ = / ,ρ ρ   
( ) =AB A B B A A B A B′′ 〈 〉 ′′ + 〈 〉 ′′ + ′′ ′′ − ′′ ′′ρ ρ/ , 

ρ ρ ρA B A B A B= ,〈 〉〈 〉 + ′′ ′′   
∇〈 〉 ∇〈 〉 = , ρ ρ ρA B A B A B∇ 〈 〉∇〈 〉 + ∇ ′′= ,

ρ ρ ρ ρ ρd
d

= ( )
turb

  


t t t
∂
∂

〈 〉( ) +∇ ⋅ 〈 〉〈 〉( ) + ∇ ⋅ ′′ ′′ ≡ 〈 〉 + ∇ ⋅u u J
D

D

ρ ρ ρ ρ ρd
d

= ( )
turb

  


t t t
∂
∂

〈 〉( ) +∇ ⋅ 〈 〉〈 〉( ) + ∇ ⋅ ′′ ′′ ≡ 〈 〉 + ∇ ⋅u u J
D

D
.

Здесь D/ D :t =  � � �/ t  〈 〉 ⋅ ∇u   – субстанци-
ональная производная по  времени для осред-
ненного континуума; J x u( )

turb( ) : ,t = 〈 ′′ ′′〉ρ   – тур-
булентный поток гидромагнитной величины 
( )x,t .

Далее, при получении осредненных уравне-
ний магнитной гидродинамики использовано 
тождество

	 ρ ρ ρd
d

( )
D
D ( )

turb
( )t t

′′ ′′ ≡ 〈 ′′ ′′〉 + ∇ ⋅ ′′ ′′ ′′ = − ⋅ ∇〈 〉 −A B A B A B BA Bu J Jtturb ⋅ ∇〈 〉 +A	

	ρ ρ ρd
d

( )
D
D ( )

turb
( )t t

′′ ′′ ≡ 〈 ′′ ′′〉 + ∇ ⋅ ′′ ′′ ′′ = − ⋅ ∇〈 〉 −A B A B A B BA Bu J Jtturb ⋅ ∇〈 〉 +A 	

	 + ′′ − ∇ ⋅ + ′′ − ∇ ⋅A BB B A A( ) ( )σ σJ J ,	

которое легко может быть получено путем 
осреднения по  Рейнольдсу субстанциональ-
ной производной d( ) d′′ ′′A B / t при использо-
вании обобщенного балансового уравнения 
� �d d  / t � �� � �J  для регулярного режима 



АСТРОНОМИЧЕСКИЙ ВЕСТНИК  том 59  № 2  2025

178	 КОЛЕСНИЧЕНКО

движения проводящей жидкости. Здесь ( )x,t  – 
скалярная, векторная или тензорная величина; 
поток J x( ),t  и  скорость образования σ( )x,t  
представляют собой величины, тензорный ранг 
которых соответственно на один порядок выше 
или тот же, что и у параметра ( )x,t .

Осредненные магнитогидродинамические 
уравнения 

Рассмотрим космическую турбулентность 
при наличии стратификации проводящей жид-
кости и  вращения изучаемого космического 
объекта. В астро-геофизическом контексте тур-
булентность имеет “магнитострофический” ха-
рактер, при котором баланс сил в первую очередь 
определяется архимедовыми силами (силами 
плавучести), силами Кориолиса и  силами Ло-
ренца, связанными с внешним и генерируемым 
магнитным полем B. Далее теория гидромагнит-
ной турбулентности рассматривается в  рамках 
сжимаемой магнитной гидродинамики средних 
полей, для которой вводится масштабное раз-
деление между средним полем и  пульсациями 
и  исследуется влияние пульсаций на  среднее 
поле. При описании развитого турбулентного 
течения в  виде суммы средней и  пульсацион-
ной составляющих гидродинамических полей, 
осредненные МГД-уравнения, записанные (в 
международной системе единиц СИ) во враща-
ющейся системе координат с угловой скоростью 
ΩΩ 0, имеют следующий вид (Kolesnichenko, Ma-
rov, 2008): 

	 ∂
∂

+ ∇ ⋅ 〈 〉( ) =ρ ρ
t

u 0,	 (1)

	 � � � � � �
D
D

= p pM М
� �

�� �� � � � � � �� � � � � � � �
u

R u
t

��0	

	� � � � � �
D
D

= p pM М
� �

�� �� � � � � � �� � � � � � � �
u

R u
t

��0 ,	 (2) 
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p
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� �
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� �
�� � �� �� � � � �� � � � � � � �� � �� � �� � � �
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2

�� �,	 (3)

	 ∂
∂

= −∇ × ∇ ⋅ =B
E B

t
, 0,	 (4)

	 j B E u B= ∇ × = + 〈 〉 × +( )− −µ σ µ0
1

0
1

e M .	 (5)

Здесь ρ( )x,t , 〈 〉 =u x u( ) : /,t ρ ρ  – соответ-
ственно осредненные массовая плотность 

и  гидродинамическая скорость электропрово-
дящей жидкости (ρ ρ ρ= + ′; u u u= 〈 〉 + ′′; ′′u x( ),t  - 
турбулентная пульсация осредненной по Фавру 
скорости); E x( ),t , B x( ),t  – соответственно осред-
ненные по  Рейнольдсу напряженности элек-
трического и магнитного поля; p ,( ) :x t = ℜ 〈 〉ρ θ  – 
осредненное газодинамическое давление; 
� �: R/m; R  - газовая постоянная; m  – средняя 
атомная масса (средняя масса на частицу в еди-
ницах mp); ��( )x u I u,t s� � � � �� ��� 2

3   – тензор 
вязких напряжений, описывающий обмен им-
пульсом между жидкими частицами под дей-
ствием молекулярной кинематической вязкости 
ν; R x u u( ),t = − 〈 ′′ ′′〉ρ   – тензор турбулентных на-
пряжений Рейнольдса;

� � � �M
av

M
turb( ) :x BB, Mt � � ��

0
1 , p :M M

av
M
turb= +p p 	 (6)

– осредненный тензор магнитных натяжений 
Максвелла и осредненное давление магнитного 
поля соответственно; 

	 � �M ,av( ) :x B Bt � �
0

1 , � �M
turb( ) :x B B,t � � ��

0
1 	 (7)

– тензоры магнитных натяжений для осреднен-
ного магнитного поля и пульсационной состав-
ляющей магнитного поля соответственно; 

	 p , /M
av( ) :x Bt =

2
02µ , p ,M

turb( ) : /x Bt = ′ 2
02µ 	 (8)

– давление осредненного магнитного поля 
и  турбулентное магнитное давление электро-
проводящей жидкости; µ 0 – магнитная прони-
цаемость вакуума (которой для магнитного кос-
мического вещества можно пренебречь, полагая 
µ0 1= ; однако для удобства перехода к  другим 
системам единиц измерения в уравнениях МГД 
параметр µ 0 далее будем оставлять); σe – удель-
ный молекулярный коэффициент электропро-
водности; j x( ),t   – осредненная плотность тока 
проводимости, фигурирующая в  осредненных 
законах Ампера (4) и Ома (5); 〈 〉 =e t e( ) : /x, ρ ρ – 
осредненное по Фавру удельное значение вну-
тренней энергии e t( )x,  космического плазмен-
ного вещества в  МГД-приближении (далее 
энергию 〈 〉e  будем считать пропорциональной 
температуре 〈 〉θ ( )x,t , 〈 〉 = 〈 〉e t с( ) :x, V θ ); � � с сP / V
- показатель адиабаты; cp, сV /= ℜ −( )γ 1   – со-
ответственно удельная теплоемкость газа при 
постоянном давлении и  теплоемкость при по-
стоянном объеме (далее эти величины будем 
считать постоянными); q xrad( ),t  – осредненная 
плотность потока энергии, переносимого излу-
чением. 
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	 q x q uturb turb, p( ) :t = − ′ ′′, q x uturb ,( ) Pt с≅ ′′ ′′ρθ 	 (9)

- соответственно приведенный поток тепла 
и  турбулентный тепловой поток (см. Колесни-
ченко, 2017); J x q q q〈 〉 = + +e t( ) : rad, turb

   – полный 
поток внутренней энергии осредненного движе-
ния плазмы; J x u u〈 〉 = ′′ ′′ = ′′v

turb( ) : ( / ),t ρ ρ1   – турбу-
лентный поток осредненного удельного объема, 
〈 〉 ≡v /1 ρ; 〈 〉 = 〈 〉 + 〈 〉ε ε εΣ M , где

	 0 � � � � � ��� � : :�� u , 0 2≤ 〈 〉 = ′ρ ε σM : /j e	 (10)

– соответственно удельная скорость вязкой 
диссипации турбулентной кинетической энер-
гии в  тепло под действием молекулярной ки-
нематической вязкости и  удельная скорость 
диссипации энергии турбулентности под дей-
ствием пульсирующего магнитного поля. По-
следнюю величину можно интерпретировать 
как теплоту Джоуля, связанную с пульсациями 
электрического тока в  турбулентной проводя-
щей среде.

Осредненное уравнение движения

При использовании преобразования 

	 �� � � � � ��
�

�

�
��

�

�

�
��
� � �

�

�
�

�

�
� � � � � � � �p MM

av av�
� � �

B BB
B B j B

2

0 0 02
1	

	�� � � � � ��
�

�

�
��

�

�

�
��
� � �

�

�
�

�

�
� � � � � � � �p MM

av av�
� � �

B BB
B B j B

2

0 0 02
1 	 (11)

осредненному уравнению движения плазмы (2) 
можно придать следующий вид:

	 � � � �
D
D

p M
turb

K
� �

� �� �� � � � � � � � � � � � �
u

R j B u
t

p ��0	

	� � � �
D
D

p M
turb

K
� �

� �� �� � � � � � � � � � � � �
u

R j B u
t

p ��0 .	 (12)

Здесь 

	 R x R u u B BK M
turb( ) : /,t � � � � �� �� � � ��� � �0	 (13)

– полный тензор турбулентных напряжений 
в плазме (так называемый кинетический тен-
зор напряжений для электропроводной жид-
кости, находящейся в магнитном поле). Заме-
тим, что приближенная форма (12) уравнения 
движения (2) справедлива только в  случае 
сильно развитой турбулентности, когда осред-
ненным тензором вязких (молекулярных) на-
пряжений ττ( )x,t  можно пренебречь по  срав-
нению с тензором турбулентных напряжений 
R x( ),t . 

Уравнение магнитной индукции  
для средних полей

Исключая из уравнений Максвелла (4) элек-
трическое поле E x( ),t , а  из закона Ома (5) ток 
проводимости j x( ),t , можно получить, при ис-
пользовании формулы векторного анализа 
∇ × ∇ × =a  ∇ ⋅ − ∇( )∇ a a2 , следующее уравнение 
магнитной индукции средних полей:

	 ρ
ρ

νD
D Mt

B
B u R B







= ⋅ ∇( )〈 〉 + ∇ ⋅ + ∇M
2 ,	 (14)

являющееся одним из  основных уравнений 
осредненной турбулентной магнитной гидроди-
намики. Здесь 

	 R x u B B uM( ) :,t = − ′′ − ′′( )	 (15)

- так называемый магнитный тензор Рейнольд-
са; � � �M e/:� 1 0 – коэффициент молекулярной 
магнитной вязкости, имеющий такую же разме-
ренность, как и  коэффициент кинематической 
вязкости ν, т.е. см2/с.

В осредненном уравнении индукции (14) 
присутствует новый член

	 ∇ ⋅ = ⋅ ∇( ) ′′ − ′′ ⋅ ∇( ) − ∇ ⋅ ′′ = ∇ × ′′ ×( ) = ∇ ×R B u u B B u u BM M: 	

	∇ ⋅ = ⋅ ∇( ) ′′ − ′′ ⋅ ∇( ) − ∇ ⋅ ′′ = ∇ × ′′ ×( ) = ∇ ×R B u u B B u u BM M:  ,	 (16)

играющий роль дополнительного источника, 
генерирующего крупномасштабное магнитное 
поле B x( ),t  за  счет мелкомасштабных спираль-
ных движений. Здесь

	 M( ) : ( )x u B u B, /t = ′′ × = ′′ × ′′ρ ρ ,	
или 
	 ( ) ( )M M i i j k j k= − 1

2
ε R 	 (17)

- турбулентная электродвижущая сила, порож-
даемая мелкомасштабными флуктуациями поля 
скоростей и магнитного поля, которая фигури-
рует также в осредненном законе Ома (5).

Следует отметить, что одной из  основных 
целей полуэмпирической теории МГД-турбу-
лентности как раз и  является конструирова-
ние специального замыкающего соотношения 
для электродвижущей силы M( )x,t  как функ-
ции средних полей B x( ),t  и 〈 〉u x( ),t , с тем, чтобы 
при известном поле скоростей 〈 〉u  можно было 
найти магнитное поле B из  уравнения индук-
ции (14). 

Система уравнений (1)–(3) и  (14) должна 
быть дополнена замыкающими соотношениями 
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для турбулентных потоков, а  также выражени-
ями для термодинамических и  переносных ха-
рактеристик. При этом граничные и начальные 
условия для осредненных структурных параме-
тров плазмы не отличаются от соответствующих 
условий для неэлектропроводящих сред, но для 
среднего магнитного поля необходимо привле-
кать дополнительные условия. 

ЭНЕРГЕТИЧЕСКИЕ УРАВНЕНИЯ 
МАСШТАБА СРЕДНЕГО ДВИЖЕНИЯ 

ДЛЯ ВЕЩЕСТВА ПЛАЗМЫ 
И МАГНИТНОГО ПОЛЯ

В осредненном турбулентном течении про-
водящей жидкости, по сравнению с его регуляр-
ным аналогом, существует большое количество 
всевозможных механизмов обмена (скоростей 
перехода) между различными видами энергии 
движущихся элементарных объемов вещества, 
вносящих свой вклад в сохраняющуюся полную 
энергию материально-полевого плазменного 
континуума (Колесниченко, 2017). 

Балансовое уравнение для осредненной 
механической энергии плазмы

Уравнение для механической энергии может 
быть получено путем скалярного умножения 
уравнения движения (2) на вектор 〈 〉u . В резуль-
тате получим:

	 � �
D

p MD
/ (p )M

av

t K� � �� � � � � � � � � � � �� �� � �� � �u u R u
2

2 ��	

	� �
D

p MD
/ (p )M

av

t K� � �� � � � � � � � � � � �� �� � �� � �u u R u
2

2 �� 	

	 � � � � � � � �� � �� �( ) :M
turb

K
avp p Mu R u�� .	 (18)

Уравнение притока тепла для осредненного 
движения турбулентной плазмы

Энергетическое уравнение (3) можно пере-
писать в виде

	 ρ
σ

D
D

p pturb〈 〉 + ∇ ⋅ +( )≅ − +( )∇⋅ 〈 〉 + ∇〈 〉 + +
∇e

t e
q q u R u

j R
rad M

turb
K

M:
:



2
BB

µ 0
	

ρ
σ

D
D

p pturb〈 〉 + ∇ ⋅ +( )≅ − +( )∇⋅ 〈 〉 + ∇〈 〉 + +
∇e

t e
q q u R u

j R
rad M

turb
K

M:
:



2
BB

µ 0
,	 (19)

справедливом, однако, только в  случае силь-
но развитого турбулентного поля, при котором 
в структуре пульсирующих величин ′′u  и  ′B  уста-
навливается такое стационарно-равновесное 

состояние, при котором полная турбулентная 
энергия плазмы (см. (35)

	 〈 〉 = 〈 〉 + 〈 〉 = ′′ + ′b b bΣ : /M /u B
2 2

02 2ρ ρµ 	 (20)

почти не меняется как во времени, так и в про-
странстве, ρD / D〈 〉 + ∇ ⋅ ≅〈 〉b t bΣ Σ

J 0 (Колесни-

ченко, 2017). Здесь ρ〈 〉 = ′′b : /u
2

2 – турбулентная 

энергия вещества плазмы; ρ µ〈 〉 = ′bM /: B
2

02   – 
турбулентная энергия магнитного поля. В этом 
случае имеет место соотношение 

	 − ∇ ⋅ 〈 〉 + ∇〈 〉 + ∇ ≅ ⋅ ∇ − ′ ∇ ⋅ ′′( ) + 〈 〉−
〈 〉pM

turb
K M v

turb: : p pu R u R B J uµ ρ ε0
1

Σ	

	− ∇ ⋅ 〈 〉 + ∇〈 〉 + ∇ ≅ ⋅ ∇ − ′ ∇ ⋅ ′′( ) + 〈 〉−
〈 〉pM

turb
K M v

turb: : p pu R u R B J uµ ρ ε0
1

Σ ,	 (21)

с помощью которого получено уравнение (19). 
Заметим также, что при применении формулы 

	 µ0
1− ∇ = − ⋅R B jM M:  	 (22)

последнее слагаемое в  правой части уравнения 
(19) может быть записано в виде − ⋅M j.

Уравнение для турбулентной энергии вещества 
плазмы 

Уравнение для турбулентной энергии веще-
ства � � � ��b : /u

2
2� имеет вид (Колесниченко, 2017):

	 ρ D
D

: p pv
turb

M
〈 〉 + ∇ ⋅ = ∇〈 〉 − ⋅ ∇ + ′ ∇ ⋅ ′′ − ⋅ − 〈 〉 ⋅ ′× ′ + ′〈 〉 〈 〉
b
t bJ R u J u j u j B jj E⋅ ′ − 〈 〉ρ εΣ .	

	ρ D
D

: p pv
turb

M
〈 〉 + ∇ ⋅ = ∇〈 〉 − ⋅ ∇ + ′ ∇ ⋅ ′′ − ⋅ − 〈 〉 ⋅ ′× ′ + ′〈 〉 〈 〉
b
t bJ R u J u j u j B jj E⋅ ′ − 〈 〉ρ εΣ .	 (23)

В случае сильно развитой турбулентности 
это уравнение, при учете формул (21) и (22), мо-
жет быть переписано в более простом виде:

	 � �
D
D

:M
turb

M
turb� �

� � � � � � � � � �� � � �� � � � � � �� �� �
b
t bJ u u j B u j Ep 	

	� �
D
D

:M
turb

M
turb� �

� � � � � � � � � �� � � �� � � � � � �� �� �
b
t bJ u u j B u j Ep .	 (24)

Здесь J x u u� � � � � �� � � ��� �b t b( ) : ( p / ), � � �   – по-
ток турбулентной энергии электропроводного 
вещества. 

Балансовое уравнение для полной осредненной 
энергии вещественной составляющей плазмы

Уравнение для величины E t e btot
sub( ) : /x u, = 〈 〉 + 〈 〉 + 〈 〉 +{ }2

2 ψ 
E t e btot

sub( ) : /x u, = 〈 〉 + 〈 〉 + 〈 〉 +{ }2
2 ψ  может быть получено путем сум-

мирования уравнений (18), (19) и (24); в резуль-
тате будем иметь 
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	 ρ
D

D
E

t E
tot
sub

tot
sub+ ∇ ⋅ =J  	

	 � �� � � � �� � � � � � � � � � � � � �� � � �p : /M MM e Gu u j j u j B j E� �
2 	

	� �� � � � �� � � � � � � � � � � � � �� � � �p : /M MM e Gu u j j u j B j E� �
2 .	 (25)

Здесь

	 J x q q u u u
E

t b
tot
sub( ) : ( p / ) pturb

M
turb, prad� � � � � �� � � �� � �� �� �� � �� �� �� � � � �� ���M

av
KR u	

	J x q q u u u
E

t b
tot
sub( ) : ( p / ) pturb

M
turb, prad� � � � � �� � � �� � �� �� �� � �� �� �� � � � �� ���M

av
KR u 	 (26)

– поток полной осредненной энергии вещества 
турбулентной плазмы. 

Энергетические уравнения для энергии  
магнитной составляющей 

сжимаемой турбулентной плазмы

При моделировании турбулентной плазмы 
следует принимать во  внимание также различ-
ные виды энергии, связанные с влиянием сред-
него поля (осредненных скорости, плотности 
и  температуры потока) на  развитие турбулент-
ности при взаимодействии магнитного поля 
и сжимаемой плазмы.

Балансовое уравнение для осредненной магнитной 
энергии плазмы 

Уравнение для магнитной энергии плазмы 
〈 〉 = = + 〈 〉E E bM

av: /B
2

02µ ρ M M имеет вид

	 ρ
D

D
M turb

M

〈 〉
+ ∇ ⋅ = −ℵ〈 〉

E
t EJ .	 (27)

где

	 EM 
av : /= B

2
02µ ρ, 〈 〉 = ′bM : /B

2
02µ ρ	 (28)

- плотность магнитной энергии среднего поля 
и  плотность турбулентной магнитной энергии 
соответственно; 

	 J x B u u u� � � �� � �� � � �� � � � � �� �E t
M

turb
M M M M( ) : / p p, M M

2
02� � ��� ��	

	J x B u u u� � � �� � �� � � �� � � � � �� �E t
M

turb
M M M M( ) : / p p, M M

2
02� � ��� �� 	 (29)

– турбулентный поток магнитной энергии плаз-
мы. Следует отметить, что поскольку правые 
части уравнений (25) и  (27) отличаются только 
знаком, то  плотность полной энергии осред-
ненного континуума E t E Etot tot

sub
M( )x, = + 〈 〉, 

равная сумме плотностей (на единицу массы), 

осредненной энергии вещества плазмы Etot
sub 

и осредненной магнитной энергии 〈 〉EM , сохра-
няется. 

Закон сохранения полной энергии системы

Для целей моделирования электропро-
водной турбулентности часто необходимо 
использовать закон сохранения осреднен-
ной полной энергии космической системы 
Etot, равной сумме осредненной полной энер-
гии электропроводного вещества космиче-
ского объекта〈 〉 = 〈 〉 + 〈 〉 + 〈 〉 +{ }E e btot

sub : /u
2

2 ψ  
и осредненной энергии электромагнитного поля 
〈 〉 = + 〈 〉E t E bM M M( , ) : avx . Суммируя уравнения 
(25) и (27), в результате получим 

	 ρ
D

D
turb

rad
E

t
QE

tot
tot

+ ∇ ⋅ =J .	 (30)

Здесь

	 J q u B u q R u uE b
tot

turb turb
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

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

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

2
02µ ρ


,	

	J q u B u q R u uE b
tot

turb turb
Poyntp /= + 〈 〉 − 



 〈 〉 + − ⋅ 〈 〉 + ′′







2
02µ ρ


,	 (31)

– диффузионный поток полной энергии элек-
тропроводной среды.

	 q E B B u BB u B BBPoynt M M: ( ) /= × = − ⋅ − ∇ + ∇ ⋅{ }1
2

0

2 2

µ
ν ν	

	q E B B u BB u B BBPoynt M M: ( ) /= × = − ⋅ − ∇ + ∇ ⋅{ }1
2

0

2 2

µ
ν ν 	 (32)

- осредненный вектор Пойнтинга, имеющий 
смысл плотности потока энергии электромаг-
нитного поля;
	 Q Bradrad : d d d� �� � � � � ��� �

� �

q nA R �� � � �� �� � � �a aI
�0 0

4	

	Q Bradrad : d d d� �� � � � � ��� �
� �

q nA R �� � � �� �� � � �a aI
�0 0

4 ,	 (33)

где ν, I tν( , , )x n  и Bν( , , )x n t  – частота, спектральная 
интенсивность и функция внутренних источни-
ков излучения соответственно; n – направление 
движения фотонов, κνa- истинный коэффици-
ент поглощения излучения веществом диска 
(спектральная непрозрачность). Величина   
в  выражении (33) соответствует поглощаемой, 
а  величина   – спонтанно излучаемой радиа-
ционной энергии в  единице объема в  единицу 
времени. Возможны несколько режимов пере-
носа излучения, которые применимы в различ-
ных областях космического объекта в  зависи-
мости от темпа аккреции, массы, энергии и т.п. 
В  частности, если полная оптическая толщина 
протозвезды d dτ ρκν ν= a s вдоль направления 
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распространения s превосходит единицу, фото-
ны переносятся к  его поверхности путем диф-
фузии. В общем случае спектральная интенсив-
ность I tν( , , )x n , входящая в формулу (33), должна 
определяться в процессе решения уравнения пе-
реноса излучения.

В МГД-приближении вектор Пойнтинга 
qPoynt  может быть преобразован к виду 

	 q B u u B BB uPoynt M M/� � � � ��
�
� �

�
�� � � � � � � �� � � �� ��2

0 0
1 2

2� � � �bM p 	

	q B u u B BB uPoynt M M/� � � � ��
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1 2

2� � � �bM p 	

� � � ��
�
� �

�
� � � � � ��� � � � �0

1 1
2

2
M M M

turb
M M

turbB BB p ,(34)

причем для сильно развитой турбулентности 
последние два малых члена, включающие ко-
эффициент νM, для большинства областей кос-
мического объекта (например, аккреционного 
диска и короны) могут быть опущены (Lazarian, 
Vishniac, 1999). Их следует принимать во  вни-
мание только в  областях высоких градиентов 
магнитного поля, например, в  области стоха-
стического перезамыкания магнитных силовых 
линий. 

Если использовать осредненный вектор 
Пойнтинга 

	 q x E H u uPoynt M M M M M M M( ) : ( p ) p, /t E� � � � � � � � � � �� �� � � � � �	

	q x E H u uPoynt M M M M M M M( ) : ( p ) p, /t E� � � � � � � � � � �� �� � � � � � ,	 (35)

то уравнению (27) для осредненной магнитной 
энергии можно придать следующий балансовый 
вид:

	 � � �� � � � � � � � � � � � �� � � ��� E tM Poynt M M/ pq u u��	

	� � �� � � � � � � � � � � � �� � � ��� E tM Poynt M M/ pq u u�� ,	 (36)

эквивалентный, как легко проверить, осреднен-
ному закону сохранения энергии электромаг-
нитного поля 

	 ∂ 〈 〉( ) ∂ = −∇⋅ − ⋅ρ E tM Poynt/ q j Е.	 (37)

Уравнение для магнитной энергии  
среднего поля B

2
02/ � �

Умножая скалярно осредненное уравнение 
индукции (14) на µ0

1− B и, учитывая справедливое 
для осредненных полей соотношение 

	 � � �0
1 2 1 2� �� � � �� � �� � � �� �B B j( )M M

av av
e p M��	

	� � �0
1 2 1 2� �� � � �� � �� � � �� �B B j( )M M

av av
e p M�� ,	 (38)

в результате получим

	 � � �
D
D

av
M M

av
M

av

t
EM Mp� � � � � � � �� � ��� 	

� � � � � � � �� � � � �� �p M eM
av av

M:u u B j�� � �0
1 1 2

G .	(39)

Уравнению (39) можно придать более на-
глядный вид, если воспользоваться выражением 
j B

2
0

2 2
= ∇ ×( )−µ и формулой векторного анализа

∇ ⋅ × = ∇ ×( ) − ∇ ×( )( )a b b a a b ; в результате будем 
иметь:

	� � � �
D
D

av
M M

av
M

av
Mt

EM Mp G� � � � � � � � � �� � ���� 0
1 B 	

	 � � � � � � � �� � � � �p G /M eM
av av

M: .u u j j��
2
� 	(40)

Из правой части этого уравнения видно, что 
магнитная энергия E tM ,av ( )x  убывает за счет оми-
ческой диссипации (последний член) и возрас-
тает в результате перехода кинетической энергии 
среднего движения (второй член) и  турбулент-
ной кинетической энергии вещества (третий 
член) в магнитную энергию среднего поля. 

Уравнение для турбулентной магнитной энергии

Уравнение для турбулентной магнитной 
энергии � � � �bM : B

2
02/ � � может быть получено 

из разности уравнений (26) и (33):

	 �
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D
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M
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M
turb

M

� �
� � � � � � � � � � �� � � � � � �� � � � � �� �

b
t bJ u u u j B j Ep ��	

	�
D

D
:M

M
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M
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M

� �
� � � � � � � � � � �� � � � � � �� � � � � �� �

b
t bJ u u u j B j Ep �� ,	 (41)

где 
	 J x u u B� �

�� � �� � �� � �� �b it E
M

( ) : ( p / ) :M M M M, � � ��� 0
1G	

	J x u u B� �
�� � �� � �� � �� �b it E

M
( ) : ( p / ) :M M M M, � � ��� 0

1G 	 (42)

– диффузионный поток турбулентной магнитной 
энергии плазмы. Из этого уравнения видно, что 
физической причиной возникновения и поддер-
жания турбулентной магнитной энергии (турбу-
лентного магнитного поля) являются турбулент-
ные электрические токи (слагаемое 〈 〉 ⋅ ′× ′u j B ), 
возникающие в среде при турбулентных пульса-
циях скорости и  магнитного поля. Последний 
член уравнения (41) описывает убывание турбу-
лентной магнитной энергии за  счeт перехода еe 
в турбулентную энергию вещества (см. (24)). 
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Балансовое уравнение для полной турбулентной 
энергии плазмы

Складывая теперь (24) и (41), получим балан-
совое уравнение для полной энергии турбулент-
ности 〈 〉 = 〈 〉 + 〈 〉b t b bΣ ( ) :x, M  электропроводной 
среды в виде

	 �
D

D
: p pM

turb
K M v

turb� �
� � � � � � � � � � �� � � � � � � � ��� � � �

b
t b
�

�
J u R u j Jp �� �� �� � � �u � �� ,	
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D
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K M v
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� � � � � � � � � � �� � � � � � � � ��� � � �

b
t b
�

�
J u R u j Jp �� �� �� � � �u � �� , 	 (43)

где

	 J u B u B u B u B B〈 〉
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
	 (44)

– диффузионный поток полной (кинетической 
плюс магнитной) турбулентной энергии элек-
тропроводной жидкости.

Следует отметить, что в пульсационном маг-
нитном поле может содержаться значительная 
(а по  некоторым оценкам даже большая) часть 
общей энергии турбулентности космической 
системы. Из уравнения (43) видно, что джоу-
лева диссипация (член ρ ε〈 〉M ) приводит к более 
быстрому затуханию возмущения плазмы, чем 
в  случае, когда имеется лишь вязкая диссипа-
ция, т.е. непосредственное взаимодействие 
поля с  возмущениями течения всегда приво-
дит к  повышению устойчивости течения плаз-
мы. С  другой стороны, магнитное поле может 
взаимодействовать и  с осредненным течением 
жидкости. При этом скорость кинематическо-
го обмена R uK : ∇〈 〉 между кинетической энер-
гией осредненного движения жидкости (см. 
(18)) и  кинетической энергией пульсационного 
движения системы зависит как от  корреляции 
между пульсациями составляющих скоростей R  
и пульсациями компонент магнитного поля RM, 
так и от сдвига средней скорости ∇〈 〉u , т.е. тензор 
дисторсии оказывает определенное воздействие 
на устойчивость течения. 

ВЫВОД МЕТОДАМИ НЕРАВНОВЕСНОЙ 
ТЕРМОДИНАМИКИ ЗАМЫКАЮЩИХ 

СООТНОШЕНИЙ ДЛЯ ТУРБУЛЕНТНЫХ 
ПОТОКОВ В ЭЛЕКТРОПРОВОДНОЙ 

ЖИДКОСТИ

Базовая система осредненных гидромаг-
нитных уравнений, состоящая из  уравне-
ний (1)–(3) и  (14), является незамкнутой, 

поскольку содержит наряду со  средними зна-
чениями параметров состояния, таких как 
ρ( ), ( ), p( ),x u x x, , ,t t t〈 〉  〈 〉θ ( )x,t , B x( ),t , и  их про-
изводными также и  неопределенные вторые 
корреляционные моменты (например, турбу-
лентные потоки q xturb( ),t , R xK ( ),t  и  R xM( ),t ), 
которые появляются в  результате осреднения 
исходных (мгновенных) нелинейных МГД-у-
равнений. В  связи с  этим обстоятельством 
возникает главная проблема феноменологи-
ческой теории гидромагнитной турбулентно-
сти – проблема замыкания, связанная с необ-
ходимостью конструирования определяющих 
соотношений для различных корреляционных 
моментов, которые в  случае рассматриваемой 
здесь спиральной турбулентности имеют свои 
специфические особенности. Воспользуемся 
для этой цели классическими методами нерав-
новесной термодинамики (см. де Гроот, Мазур, 
1964).

Уравнение баланса осредненной энтропии

Термодинамический анализ турбулентной 
жидкости проведем в предположении, что одно-
точечные корреляции 〈 ′′ ′′〉A B  для всех пульсиру-
ющих термодинамических параметров ( )x,t  и 
( )x,t  (за исключением скорости течения u x( ),t ) 
малы по сравнению с членами первого порядка 
〈 〉〈 〉A B  и могут быть опущены. В работе (Колес-
ниченко, 2017) было показано, что в этом случае 
фундаментальное тождество Гиббса для осред-
ненной составляющей турбулентного движения 
электропроводной жидкости имеет вид

	 〈 〉 〈 〉 = 〈 〉 + 





θ
ρ

D
D

D
D

p
D
D

S
t

e
t t

1 .	 (45) 

Исключая из  этого уравнения субстанцио-
нальные производные от  параметров 〈 〉e t( )x,  и 
ρ( )x,t  с  помощью уравнений (1) и  (3), получим 
уравнение баланса для осредненной энтропии 
〈 〉S t( )x,  среды в следующем явном виде: 
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,	 (46)
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Здесь, величина σ( ,S
i t〉

( ) ( )x , определяющая 
скорость локального производства энтро-
пии 〈 〉S t( )x,  жидкости (обусловленного не-
обратимыми процессами переноса внутри 
подсистемы осредненного движения), всегда 
положительна. Однако величина σ〈 〉S

e t( ) ( )x, , от-
носящаяся к  стоку или притоку осредненной 
энтропии, может быть разной по  знаку и, как 
будет ясно из  дальнейшего, отражает обмен 
энтропией между подсистемами осредненного 
движения и  подсистемой турбулентного хаоса 
(Колесниченко, 2017). Из выражения (47) сле-
дует, что одной только осредненной энтропии 
жидкости 〈 〉S t( )x,  недостаточно для адекват-
ного описания всех особенностей турбулент-
ного течения, поскольку для этой величины 
не выполняется второй закон термодинамики. 
Кроме этого, энтропия 〈 〉S t( )x,  не связана явно 
с  какими-либо параметрами пульсирующего 
турбулентного хаоса, характеризующими его 
внутреннюю структуру, в  частности с  такими 
ключевыми характеристиками турбулентно-
сти, как кинетическая энергия турбулентности 
〈 〉b t( )x,  и  энергия турбулентности магнитного 
поля 〈 〉b tM ,( )x . Именно по  этой причине при 
конструировании адекватной термодинамиче-
ской модели гидромагнитной турбулентности 
необходим ввод в  рассмотрение подсистемы 
турбулентного хаоса.

Уравнения баланса энтропии и производство 
энтропии для подсистемы турбулентного хаоса

Термодинамику турбулентной электро-
проводной жидкости удобно анализировать 
в  рамках “двухжидкостного” континуума, со-
стоящего из  двух открытых и  взаимосвязан-
ных подсистем: подсистемы осредненного 
движения, которая получается в  результате 
теоретико-вероятностного осреднения МГД-
уравнений, и  подсистемы турбулентного ха-
оса, связанной с  пульсационным движением 
среды (Колесниченко, 2011). Будем далее счи-
тать, что элементарный объем dx турбулент-
ного вещества может быть охарактеризован 
дополнительными экстенсивными перемен-
ными состояния, такими как плотность вну-
тренней энергии е tturb( )x,  и  энтропия S tturb( )x,  
турбулизации вещества, а также интенсивными 
переменными состояния, в  качестве которых 
будем использовать обобщенную температуру 
пульсационного поля турбулентности θturb( )x,t  
(величину, характеризующую степень интен-
сивности турбулентных пульсаций) и давление 

турбулизации p ( )turb x,t . При этом важно иметь 
в  виду, что подобные термодинамические ха-
рактеристики подсистемы турбулентного хаоса 
(рассматриваемые далее в  качестве первичных 
концепций) вводятся здесь a priori для обеспе-
чения связности предложенного формального 
подхода и  не имеют, в  общем случае, точной 
физической интерпретации. 

Следуя теперь методу Гиббса, выберем в ка-
честве локального характеристического функ-
ционала, содержащего все термодинамические 
сведения о  подсистеме турбулентного хаоса 
в локально-равновесном (либо в стационарном 
состоянии), фундаментальное уравнение для 
обобщенной энтропии: S turb = S еturb turb, v〈 〉( ), 
которое будем считать заданным a priori. При-
мем теперь, как это обычно делается при форма-
лизованном построении классической термоди-
намики, следующие определения сопряженных 
переменных θturb( )x,t  и p ( )turb x,t  (считая, что все 
указанные производные положительны):

	 1/ /�turb turb turb

v
:� �� �

� �
S е ,	

	  p : vturb turb turb
turb

/ /� � � �� �� �S
е

.	

Именно в  этом случае интенсивным пере-
менным θturb( )x,t  и  p ( )turb x,t  можно приписать 
смысл соответственно обобщенной температу-
ры и давления подсистемы турбулентного хаоса. 
Тогда дифференциальная форма фундаменталь-
ного уравнения Гиббса, записанная вдоль тра-
ектории движения центра масс элементарного 
физического объема, принимает вид 
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1 .	 (48)

Далее будем отождествлять внутреннюю 
энергию е tturb( )x,  с  полной энергией тур-
булентности электропроводной жидкости 

ρ ρ ρ µе bturb : / /= 〈 〉 = ′′ + ′£ u B
2 2

02 2 ; тогда 
p ( ) ( : )turb

Kx R I,t b≡ = 〈 〉2
3

ρ Σ . Соответствующее 
балансовое уравнение для энтропии турбулиза-
ции S tturb( )x,  электропроводной среды получим 
из (48) рассмотренным выше способом, исполь-
зуя для этого уравнение (1) для удельного объема 
1 / ρ и уравнение (43) для полной турбулентной 
энергии 〈 〉b tΣ ( )x, ; в результате получим:
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i
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�
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1R BM : ,�� 	(50)

	 σ
θ

ρ ε
θS

e
turb

( )
turb v

turb
turb

: p p= ′ ∇ ⋅ ′′ − ⋅ ∇ − 〈 〉{ } ≡ − ℑ
〈 〉

1
u J Σ 	

	σ
θ

ρ ε
θS

e
turb

( )
turb v

turb
turb

: p p= ′ ∇ ⋅ ′′ − ⋅ ∇ − 〈 〉{ } ≡ − ℑ
〈 〉

1
u J Σ .	 (51)

Здесь �� �� ��:� � � �2 0 ; величины σ
S

i tturb
( ) ( )x,  и 

σ
S

e tturb
( ) ( )x,  имеют соответственно смысл скоро-

стей локального производства и  стока пульса-
ционной энтропии S tturb( )x, . Отметим, что от-
несение отдельных слагаемых уравнения (49) 
к турбулентному потоку J x J

S btturb ( ): / turb, = 〈 〉Σ
θ , 

или к производству σ
S

tturb ( )x,  энтропии S tturb( )x, , 
вообще говоря, неоднозначно: возможен целый 
ряд альтернативных формулировок, исполь-
зующих различные определения величины 
J x

( )turb ( )
S

t, . 

Балансовое уравнение для суммарной энтропии

Введение в  рассмотрение двух энтропий 
〈 〉S t( )x,  и  S tturb( )x,  конкретизирует наше пред-
ставление о турбулентном континууме как о тер-
модинамическом комплексе, состоящем из двух 
взаимно открытых подсистем, заполняющих 
одно и то же координатное пространство непре-
рывно – подсистемы среднего движения прово-
дящей жидкости и  подсистемы турбулентного 
хаоса. Комбинируя (46) и (49), получим уравне-
ние баланса для суммарной S ,�( ) : turbx t S S� � � �  
энтропии системы в виде 

�
�

�� � � � �
� �

�
�
�
�

��

�
�
�

��
� �� �

t
S S e b

( )
turb

�
� �

�
 
 


� u

J J
0 , (52)

где J x q q q〈 〉 = + +e t( ) : rad
turb,  - поток турбулент-

ной внутренней энергии проводящего вещества; 

� � �
� �

� �
�( ) : ( ) ( )( ) ( )

turb

turbturbx x x, , ,t t tS
i

S

i� � � �
� � �

� �� �   – 

производство суммарной энтропии, связанное 
с  необратимыми процессами в  турбулентной 
плазме; ℑ = − ′ ∇ ⋅ ′′ +( ) : px u,t  J� � � � � � �v

turb p � ��   – 
поток энергии перехода между подсистемами 
осредненного движения и турбулентного хаоса. 

Положительная величина σΣ( )x,t  имеет сле-
дующую билинейную структуру:

	 0
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0
1� � �
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�
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K
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Mln p : :J R I u R Bb�
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	� � � � � �� � �� � � � �� �� �� �
�1
0

1

�
� �

turb
turb

K
turb

Mln p : :J R I u R Bb�
�� .	 (53)

Из (53) видно, что локальное производство 
��( )x,t  суммарной энтропии S tΣ( )x,  определяется 
следующим набором термодинамических потоков: 
	 J x〈 〉e t( ), , J x〈 〉b t

Σ
( ), , ττ( )x,t ,	   

	 R x I xK
turb( ) p ( ), ,t t−( ), R xM( ),t , ℑ( )x,t  	 (54)

и сопряженных им термодинамических сил 

∇
〈 〉







1
θ

, ∇





1

θturb
, 1

〈 〉
∇〈 〉

θ
u , 1

θturb
∇〈 〉u , 

	 �turb � �� �B � , θ θ
θ θ

turb

turb

− 〈 〉
〈 〉

. 	 (55)

Согласно основному постулату неравновесной 
термодинамики, в  том случае, когда термодина-
мическая система находится вблизи локального 
равновесия или вблизи устойчивого стационарно-
неравновесного состояния, термодинамические 
потоки могут быть представлены в виде линейных 
конститутивных соотношений от  сопряженных 
им макроскопических сил (де Гроот, Мазур, 1964) 
для осредненных молекулярных потоков, так и для 
турбулентных потоков, фигурирующих в  осред-
ненных уравнениях МГД. Следует иметь в виду, что 
спектр возможных перекрестных эффектов для 
турбулентного режима течения электропроводной 
жидкости значительно расширяется по сравнению 
с ее регулярным режимом течения. Однако в на-
стоящее время, к сожалению, отсутствуют надеж-
ные экспериментальные данные, количественно 
описывающие многие эффекты такого рода. Кро-
ме того, вклад от любых перекрестных эффектов 
в общую скорость процессов переноса на порядок 
меньше вклада от  прямых эффектов. С  учетом 
этих замечаний будем далее распространять ус-
ловие положительности производства суммарной 
энтропии ��  на каждое слагаемое в отдельности, 
т.е. полагать, что σ〈 〉 ≥S

i( ) 0, σ
S

i
turb

( ) ≥ 0, σ
〈 〉

≥
S S, turb 0. 

Будем также без специальных оговорок опускать 
ряд перекрестных эффектов в линейных консти-
тутивных соотношениях. 

В заключение этого подраздела отметим, что 
первое слагаемое в правой части выражения (53), 
описывающее производство энтропии внутри 
полной системы за  счет необратимого обмена 
энтропией между подсистемами турбулентного 
хаоса и осредненного движения, в силу второго 
закона термодинамики всегда положительно

	 � � � � �
� �

� � � � �� � � � �
S S

t
,

turb turb
turb ( ) /x, 0,	 (56)

и потому “направление” термодинамическо-
го потока ℑ( )x,t  определяется знаком функции 
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состояния X tℑ ≡( )x,  ( / / )turb1 1〈 〉 −θ θ . Эту функ-
цию следует рассматривать как сопряженную 
термодинамическую силу, вызывающую именно 
этот поток энтропии. Известно, что подобного 
рода обмен энтропией между двумя взаимно от-
крытыми подсистемами является непременным 
условием возникновения когерентных структур, 
т.е. может быть источником самоорганизации 
в одной из них (Дьярмати, 1974). 

Стационарно-неравновесный режим подсистемы 
турбулентного хаоса

Покажем, что диссипативная активность 
подсистемы турбулентного хаоса в  случае ста-
ционарно-неравновесного состояния как раз 
и определяется притоком отрицательной энтро-
пии ( : / )

( )
turb

turbσ θ
S

e = −ℑ < 0  от подсистемы осред-
ненного движения. С  этой целью проанализи-
руем режим развитого турбулентного движения 
жидкости – режим стационарно-неравновесной 
турбулентности, когда в  подсистеме турбулент-
ного хаоса устанавливается такое квазистацио-
нарное состояние, при котором D / DturbS t ≅ 0, 
а  поток J x J

( )
turb

turb ( )
S bt, /≡ 〈 〉Σ

θ  энтропии турбу-
лизации S tturb( )x,  почти постоянен, J

( )turb const
S

≅ . 
Последнее условие означает, что производство 
энтропии турбулизации σ

( )turb ( )
S

i tx,  так компен-
сируется ее оттоком σ

( )turb ( )
S

e tx, , что генерация 
� � �( ( ) ( )turb turb turbS S

e
S

i
)� � �0  энтропии турбулиза-

ции S tturb( )x,  почти отсутствует. Так как вели-
чина �( )turbS

i � 0, то  справедливо приближенное 
равенство 0 � � �� �

( ( )turb turbS
e

S
i

)
. Таким образом, 

в этом случае турбулентный хаос должен экспор-
тировать энтропию во  “внешнюю среду” (т.е. 
отдавать количество энтропии σ

( )turbS
e  осреднен-

ному движению), для того чтобы скомпенсиро-
вать ее производство (количество σ

( )turbS
i ) за счет 

внутренних необратимых процессов. Другими 
словами, для поддержания квазистационарного 
состояния в подсистеме турбулентной надструк-
туры необходим приток отрицательной энтропии 
(негэнтропии) от подсистемы осредненного дви-
жения, σ θ θ σ θ

( )
turb turb

turb : / /
S

e
S

e= −ℑ = − 〈 〉 <〈 〉 0. 
Именно эта, поступающая в подсистему турбу-
лентного хаоса, негэнтропия расходуется на об-
разование в  ней разнообразных упорядочен-
ных (диссипативных) структур (см. Пригожин, 
Стенгерс, 1994). 

Действительно, поскольку в  стационар-
но-неравновесном состоянии величина оттока 
энтропии из  подсистемы осредненного движе-
ния положительна 0 ≤ = ℑ 〈 〉〈 〉σ θS

e / , то  скорость 

обмена энтропией (теплом) между осреднен-
ным и  пульсационным движениями также по-
ложительна, ℑ ≥ 0. Но тогда из  неравенства 
� � � � �� � � � � � � � � �S S,

turb turb
turb : ( ) / 0

 
следует, что 

температура турбулизации θturbвыше осреднен-
ной температуры 〈 〉θ , что находится в  полном 
согласии с основным синергетическим принци-
пом о  самоорганизации любой диссипативной 
системы. В  соответствии с  этим принципом, 
формирование упорядоченных структур (мелко-
масштабных вихревых образований) в подсисте-
ме турбулентного хаоса при отводе тепла из нее, 
т.е. при переходе к более низким температурам 
〈 〉θ , является универсальным свойством мате-

рии (Пригожин, Стенгерс, 1994).
Кроме этого, в  рассматриваемом слу-

чае верно приближенное равенство 0 � �� �� S
e  

� � � � �� � �turb
( )turb /S
e  � � �turb

( )turbS
i /� �, и  уравнение 

(46) для энтропии 〈 〉S ( )x,t  принимает вид
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S
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( )turb
θ

θ
σ ,	 (57)

где для локального рассеяния энергии 〈 〉 〈 〉θ σ S  
справедливо выражение 

	 0 0
1 2

≤ 〈 〉 = − ⋅ ∇ 〈 〉 + ∇ ×( ) +〈 〉
−θ σ θ ν µS : lnturb

q BM  	

	 � ��
�

�
� �� � � � �� ��R I u R BK

turb
Mp : :�0

1 �� .	 (58)

Выражение (58) содержит потоки и  термо-
динамические силы первой и второй тензорных 
размерностей. Если разложить тензор второ-
го ранга ∇〈 〉 = ∇ 〈 〉 + ∇ 〈 〉u u us a  на  симметричную 
∇ 〈 〉s u  (тензор скорости деформации) и антисим-
метричную части 2∇ 〈 〉 = ∇ × 〈 〉 ≡ 〈 〉a u u É , то пред-
последнее слагаемое в (58) может быть перепи-
сано в виде 

	 R I u R DK
turb

Kp : :−



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0 0
,	 (59)

где
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0

1
3

2
3M

turb
M
turb

M
turb

M
turb: :� � � � � � � �I I I� b M 	 (60)

– симметричные тензоры турбулентных напря-
жений Рейнольдса R  и  магнитных натяжений 
ττM

turb. Аналогично последнее слагаемое в (58) мо-
жет быть переписано в виде
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µ µ0
1

0
1− −∇ = ∇ + ∇{ } = − ⋅R B R B B jM M M: : s a  .	(61)

Исходя из  выражения (58), при использо-
вании принципа Кюри–Пригожина (согласно 
которому связь между тензорами различного 
ранга в  изотропной среде невозможна (де Гро-
от, Мазур, 1964)), можно получить (в пренебре-
жении перекрестными эффектами) следующие 
определяющие соотношения для турбулентных 
гидромагнитных потоков:

q x
gturb

p p
, S( ) ,turb turbt

с с
= − 〈 〉 ∇〈 〉 ≅ − ∇〈 〉 −


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


λ θ λ θ 	(62)
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M
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где K t b bR ( ) :x, M= 〈 〉 − 〈 〉  – так называемая оста-
точная энергия турбулентности (Pouquet и  др., 
1976); λ turb, νK

turb, νM
turb, ν ηM,К

turb turb,   – соответ-
ственно модельные коэффициенты переноса 
(в общем случае тензоры 2-го или 4-го рангов) 
турбулентной теплопроводности, турбулентной 
кинематической и турбулентной вязкости и тур-
булентной диффузии магнитного поля, завися-
щие в  общем случае от  статистических харак-
теристик спиральной турбулентности K tR ( ),x,  
W t( )x, , ε( )x,t  и H t( )x, . 

Определяющее соотношение для вектора ра-
диации, записанное в  форме лучистого потока 
тепла, принимает вид
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4,	 (65)

справедливый в  случае равновесного излуче-
ния (например, при локальном термодина-
мическом равновесии излучения с  веществом 
внутри оптически толстых дисков). Здесь σB, 
� � � ��rad B� � �16 33 /   – соответственно постоян-
ная Стефана–Больцмана и  коэффициент лу-
чистой (нелинейной) теплопроводности среды, 
сильно зависящий от  температуры и  плотно-
сти вещества; κ ρ θ( , )  – полная непрозрачность 
среды, которая сложным образом зависит 

от параметров состояния ρ и θ, а также от степени 
ионизации и химического состав (см., например, 
Франк-Каменецкий, 1959; Фридман, Бисикало, 
2010) и т.п. В общем случае величина κ опреде-
ляется как росселандово среднее по  обратным 
величинам 1/�� спектральной непрозрачности. 
Как известно, доминирующий вклад κ f f  в  не-
прозрачность κ в  аккреционном диске вносит 
нерелятивистское тепловое тормозное излуче-
ние, или “свободно-свободные переходы”. Свя-
занная с этими процессами поглощения средняя 
по  Росселанду непрозрачность κ определяется 
формулой Крамерса � � � ��f f ( , ) 7/2� �K   см2  г–1, 
где K � �0 32 1023.  - константа. В оптически тол-
стых дисках сравнимую (но все же меньшую) 
величину �es 1� � ��2 10 2( )X  см2 г–1 вносят “свя-
занно-связанные” переходы в линиях и “связан-
но-свободные” ионизационные переходы (здесь 
X  - массовая доля водорода в дисковой среде).

Замыкающее соотношение для турбулентной 
электродвижущей силы

Из соотношений (17) и  (64) вытекает следу-
ющее выражение для турбулентной электродви-
жущей силы 

	 GM M
turb

M,К
turb( )x B,t � � � � � � ��� � �0

1 ��.	 (66)

Коэффициенты νM
turbи νM,К

turb , определяемые 
пульсационными полями ′′u и ′B , часто можно 
считать постоянными величинами. Поскольку 
вектор B является псевдовектором (т.е. он  из-
меняет знак при инверсии пространственных 
координат), а вектор M представляет собой ис-
тинный (полярный) вектор и должен быть обра-
зован из различных истинных векторов, то маг-
нитный коэффициент турбулентной вязкости 
(диффузии) νM

turb должен являться скаляром, в то 
время как коэффициент νM,К

turb  является псевдо-
скаляром. Часто слагаемое с  коэффициентом 
νM,К

turb , описывающее перекрестный эффект, мо-
жет быть опущено (Coroniti, 1981). Тогда соот-
ношение (66) принимает более простой вид: 
M M

turb= − ∇ ×ν B. Подстановка этого выражения 
в  уравнение (14) приводит к  следующему урав-
нению индукции для средних полей: 

	 ρ ρ ν νD
D

/ : M
turb

t
B B u B( ) = ∇〈 〉 + +( ) ∇M

2 ,	 (67)

из которого следует, что суммарное влияние 
турбулентной ЭДС M сводится в  этом случае 
просто к  изменению величины эффективного 
коэффициента диффузии магнитного поля, т.е. 
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νM → ν νM + M
turb. Если коэффициент νM

turbявля-
ется положительной величиной, то  случайное 
перемешивание турбулентной плазмы (созда-
ваемое пульсациями полей ′′u и ′B ) не ослабляет, 
а усиливает диффузионный процесс. 

Сделаем теперь чрезвычайно важное заме-
чание по поводу вывода формулы (66) для ЭДС, 
описываемой вектором M. Этот вывод спра-
ведлив только для изотропной (в гидродинами-
ческом смысле) однородной турбулентности, 
когда поле пульсирующих скоростей ′′u  облада-
ет зеркальной симметрией во  всей плазменной 
среде. В  частности, этим свойством обладает 
турбулентность, возбуждаемая решеткой в  од-
нородном течении на  некотором расстоянии 
от решетки. Поскольку неизвестны условия, при 
которых подобная турбулентность не зеркально 
симметрична, то этот случай является чисто ака-
демическим. Тем не менее его часто принимают 
во  внимание, поскольку он  представляет опре-
деленный интерес в динамо-теории. 

Вместе с  тем для реального вращающегося 
аккреционного диска (или Солнца) часто реали-
зуется ситуация, при которой, например, в верх-
ней части аккреционного диска (или в северном 
полушарии Солнца) левовинтовые спиральные 
движения более вероятны, чем правовинтовые, 
или наоборот. Физическая причина нарушения 
отражательной симметрии может быть обуслов-
лена также векторным гравитационным полем 
g, которое может быть полем градиента интен-
сивности турбулентности или полем градиен-
та плотности. Вектор электродвижущей силы 
M, записанный в этом случае в виде (см. Крау-
зе, Рэдлер, 1984)

	 M M
turb

G
turb= − ∇ × − ×ν νB g B,	

перпендикулярен к полям g и B и может быть ин-
терпретирован как эффект накачки. 

Для турбулентности, находящейся под воз-
действием силы Кориолиса, турбулентные вих-
ри могут всплывать и  опускаться в  дисковой 
среде. При этом зеркальная симметрия пульса-
ционного поля ′′u  относительно центральной 
плоскости диска в  общем случае отсутствует, 
поскольку турбулентность может обладать так 
называемой гидродинамической спирально-
стью HK := 〈 ′′ ⋅ ′′〉u É , характеризующей избыток 
вихрей определенного знака (см. Moffatt, 1980; 
Краузе, Рэдлер, 1984). Обобщение формулы (66) 
на  случай отражательно-несимметричной тур-
булентности принимает следующий вид: (см. 
Steenbeck и др., 1966) 

	 GM M
turb

M,К
turb( )x B B B j,t � � � � � � � �� � � � � ��� ��	

	GM M
turb

M,К
turb( )x B B B j,t � � � � � � � �� � � � � ��� ��,	 (68)

где �� �� ��:� � � �� �2 0 ; γ ν= 5
7 K,M

turb , β ν= 5
7 M

turb. Ко-
эффициент спиральности α( )x,t  является псев-
доскаляром, и  потому альфа-эффект антисим-
метричен относительно центральной плоскости 
диска. Свойства симметрии уравнений Максвел-
ла допускают при этом два вида симметрии для 
собственных решений (мод) уравнения динамо 
среднего поля (см. (70)): магнитные поля могут 
быть антисимметричными относительно эква-
тора (дипольная симметрия) и  симметричны 
относительно экватора (квадрупольная симме-
трия). В частности, механизм солнечного дина-
мо возбуждает, как правило, преимущественно 
дипольную осциллирующую моду (так назы-
ваемое правило Хейла). Простые рассуждения 
показывают, что для случая изотропного и зер-
кально симметричного поля скоростей ′′u x( ),t  
коэффициент спиральности α  равен нулю. Дей-
ствительно, для изотропной среды одинакова 
вероятность как некоторой данной реализации 
ансамбля этого поля, так и  реализации, полу-
ченной из  нее зеркальным отражением. Тогда, 
с одной стороны, коэффициент α( )x,t  не должен 
изменяться, если выполнить преобразование 
отражения, так как сам ансамбль не изменился, 
но, с  другой стороны, коэффициент α  должен 
изменить свой знак, так как он является псевдо-
скаляром; отсюда следует, что α = 0. 

Подставляя выражение (68) в  закон Ома (5) 
и в уравнение индукции (14) для средних полей, 
получим:

	 j E u B B� � � � � � �� �� � �e
turb �� ,	 (69)

	 ρ
ρ

µ α ν ν γD
D Mt

B
B u j B u







≅ ⋅ ∇( )〈 〉 + + + ∇ − ∇ 〈 〉0
2 2( )M

turb	

	ρ
ρ

µ α ν ν γD
D Mt

B
B u j B u







≅ ⋅ ∇( )〈 〉 + + + ∇ − ∇ 〈 〉0
2 2( )M

turb ,	 (70)

где 

	 σ
σ

µ ν σ
σ ν

ν ν
σ ν
ν µ νe

M

M

Mturb

M
turb

M
turb

M
turb

M
turb

=
+

=
+

≅ =e

e

e e

1

1

0 0

	

	σ
σ

µ ν σ
σ ν

ν ν
σ ν
ν µ νe

M

M

Mturb

M
turb

M
turb

M
turb

M
turb

=
+

=
+

≅ =e

e

e e

1

1

0 0

	 (71)

- турбулентная проводимость σe
turb, которая 

в случае развитой турбулентности меньше моле-
кулярной проводимости σe.

В уравнении (70) член с коэффициентом νM
turb 

отражает увеличение магнитной диффузии (или 



	 ВЛИЯНИЕ СЖИМАЕМОСТИ И ВРАЩЕНИЯ НА ОБРАЗОВАНИЕ ДИНАМО-ЭФФЕКТА	 189

АСТРОНОМИЧЕСКИЙ ВЕСТНИК  том 59  № 2  2025

турбулентного удельного сопротивления прово-
дящей плазмы) за  счет турбулентных флуктуа-
ций. Физический смысл коэффициента α( )x,t  
можно пояснить с  помощью уравнения (69), 
которое отражает возникновение осредненно-
го тока проводимости j x( ),t , направленного па-
раллельно или антипараллельно вектору B x( ),t  
в  зависимости от  знака α( )x,t  (Краузе, Рэдлер, 
1984). Это резко противоречит ламинарному 
случаю, когда величина u B×  порождает ток про-
водимости j перпендикулярно вектору B. Меха-
низм, связанный с  коэффициентом α, обычно 
называют альфа-эффектом или турбулентным 
динамо. Коэффициент α( )x,t  в  статистической 
теории выражается в  терминах двух типов спи-
ральных характеристик турбулентности, а имен-
но в  виде разности магнитной спиральности 
HM := 〈 ′ ⋅ ′〉−ρ0

1B j  и гидродинамической спираль-
ности HК :� � �� � ����� u ; α  H HM К−  (см. Yoshiza-
wa, 1990). 

ЭВОЛЮЦИОННЫЕ МОДЕЛЬНЫЕ 
УРАВНЕНИЯ ДЛЯ СПИРАЛЬНОСТЕЙ K, W 

И H. КОЭФФИЦИЕНТЫ ПЕРЕНОСА

Для замыкания системы уравнений (62)–(64) 
и (68), необходимо иметь выражения для коэф-
фициентов переноса в  терминах среднего поля 
и  объемных величин, характеризующих спи-
ральное гидромагнитное состояние турбулент-
ного поля. К  сожалению, термодинамический 
подход не позволяет получить явные выражения 
для коэффициентов ламинарного и  турбулент-
ного переноса. Для их определения, как правило, 
привлекается статистическая теория динамики 
турбулентности, которая позволяет строить мо-
дели на более прочной основе, чем это возможно 
при использовании эвристических методов (см., 
например, Краузе, Рэдлер, 1984; Yoshizawa и др., 
2004). В частности, статистический подход при-
водит к следующим выражениям для коэффици-
ентов α β( ), ( )x x, ,t t  и γ( )x,t  (Yokoi, 2006): 

	 α εα= C K H / , � ��� C K 2 / , 	  
	 γ εγ= C K W / , � ��� С K 2 / .	 (72)

Здесь 
	 Cα ≅ 0 02. , Cβ ≅ 0 055. , Cγ ≅ 0 039. ;	

	 K t( ) : /x u B, = 〈 ′′ 〉 + 〈 ′ 〉( )1
2

2 2
0 0ρ µ 	 (73)

  – полная турбулентная энергия сжимаемой 
плазмы (скалярная величина); 

	 W t( ) :x u B, = 〈 ′′ ⋅ ′〉	 (74)

- турбулентная поперечная (кросс) спираль-
ность (псевдоскалярная величина);

	 H t( ) :x B j u, � � � � �� � � ��� ����
�

�
�

��0
1 �� 	 (75)

 – турбулентная остаточная спиральность (псев-
доскалярная величина);

ε ρ ρσ ρΣ( ) : : / / : /x u j u,t e= ∇ ′′ + ′ ∇ ′′Ä Ä2
 	 (76)

– полная удельная скорость диссипации тур-
булентной кинетической энергии и  магнитной 
энергии тепло.

Для того чтобы замкнуть вышеприведенные 
выражения для транспортных коэффициентов, 
необходимы эволюционные уравнения для объ-
емных статистических величин K t( )x, , W t( )x, , 
H t( )x,  и ε( )x,t  (см., например, Yoshizawa, 1998; Yo-
koi, 1999). В  силу чрезвычайной громоздкости 
этих уравнений для сильно сжимаемой среды 
ограничимся далее случаем слабой сжимаемо-
сти ρ ρ 0. Заметим при этом, что в сжимаемом 
потоке, если сжимаемость не  так сильна, как 
в случае сдвиговых течений, турбулентность ча-
сто можно рассматривать как слабо сжимаемую. 
При этом именно стратификация средней плот-
ности ρ0 является фундаментальной характери-
стикой, влияющей на турбулентность.

Дифференциальные уравнения для пульсаций 
в случае ρ ρ 0

Пульсации скорости ′u x( ),t  и  магнитного 
поля ′B x( ),t  в рассматриваемом случае описыва-
ются следующими уравнениями:

	 D
D

( )
′ + ∇ ⋅ ′ ′ − ′ ′ +( ) =−u

u u B B R
t Kρ µ0 0

1 	

	 � � � � � � � � � � �� � � � � � � � � �� � � � �� �� � � �0
1

0 0 0
12p ( )M �� u u u B B B B u	

	� � � � � � � � � � �� � � � � � � � � �� � � � �� �� � � �0
1

0 0 0
12p ( )M �� u u u B B B B u ,	 (77)

	 D ′ + ∇ ⋅ ′ ′ − ′ ′( ) =B
u B B u

D t
	

	 = ∇ × − ′ ⋅ ∇ + ⋅ ∇ ′ + ′ ⋅ ∇〈 〉 + ∆ ′M Mu B B u B u Bλ	

	= ∇ × − ′ ⋅ ∇ + ⋅ ∇ ′ + ′ ⋅ ∇〈 〉 + ∆ ′M Mu B B u B u Bλ .	 (78) 

Для дальнейших целей нам понадобятся так-
же аналогичные уравнения для пульсаций завих-
ренности � � � � ��� ( ) ( )x u,t  и пульсаций плотности 
электрического тока ′j x( ),t . Первое уравнение, 
которое легко может быть получено из  уравне-
ния (15), имеет вид:
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	 D �
� � � � � � � � � � � � � �� � � � � � � � � � � �� � �� ���

�� �� �� ��
D t Ku u B j j B R u� � �0

1
0

1 	

	D �
� � � � � � � � � � � � � �� � � � � � � � � � � �� � �� ���

�� �� �� ��
D t Ku u B j j B R u� � �0

1
0

1 	
	 � � � � � � � � � �� � � � � � � � � � � � � � � � � �� ���� ��u u B j B j j B j B�0

1 .	
	� � � � � � � � � �� � � � � � � � � � � � � � � � � �� ���� ��u u B j B j j B j B�0

1 .	 (79)

Второе уравнение для ′j x( ),t  имеет в  общем 
случае более сложную структуру 

	 D
D

�
� � � � � � � �� � ��j

u j B
t

�0
1 �� 	

	 � � � � � � � � � � � �� � � � � ��u j B B j� �0
1 �� �� M ,RС	  

	� � � � � � � � � � � �� � � � � ��u j B B j� �0
1 �� �� M ,RС 	 (80)

где величина RС состоит из слагаемых третьего по-
рядка малости по пульсациям, которой нет в урав-
нениях (77), (78). Это обстоятельство связано, в ко-
нечном счете, с отсутствием закона сохранения для 
плотности электрического тока ′j , в отличие от ве-
личин ′u , ′B  и  ��� , для которых в  случае нулевых 
значений коэффициентов переноса ν и λM имеют 
место законы сохранения для суммарной гидро-
магнитной энергии 1

2
2

0 0
1 2′ + ′−∫ u B( ) dρ µ V , по-

перечной спиральности ′ ⋅ ′∫ u B dV  и  кинетиче-
ской спиральности � � �� u �� dV . 

Феноменологические уравнения для дескрипторов 
в слабо сжимаемой турбулентности

Используя дифференциальные уравнения 
(77)–(80) для пульсаций ′ ′ ′u B, ,É и ′j , можно по-
лучить следующие дифференциальные уравне-
ния для дескрипторов К t W t( ), ( )x x, ,  и H t( )x,  (Yo-
koi, 1999; Yoshizawa, 1998): 

	 D
D

: :M
К
t

WK K= ∇〈 〉 + ∇ + ⋅ ∇( ) − +R u R B B
1

0 0ρ µ
ε 	

	D
D

: :M
К
t
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где R обозначает оставшуюся часть, которая 
не  зависит явно от  среднего поля и  состоит 
из корреляционных функций третьего порядка 
для пульсаций ′u x( ),t , ′B x( ),t , ��� ( )x,t  и  ′j x( ),t . Эта 
сложная форма резко контрастирует со случаем 
для турбулентной кинетической спиральности 
в  электрически непроводящих турбулентных 
потоках. Этот факт является большим препят-
ствием для построения самосогласованной 
модели динамо, применимой к различным ти-
пам астро- и  геофизических явлений. Именно 
по этой причине в теории среднего поля с уче-
том альфа-эффекта турбулентной остаточ-
ной спиральности в настоящее время уделяет-
ся мало внимания. Это связано, в  частности, 
с тем, что альфа-коэффициент часто принима-
ется за внешний параметр задачи и потому его 
самосогласованное определение не представля-
ет интереса. Другая причина заключается в том, 
что основное внимание уделяется только ки-
нетической части � � � ���� u  величины H t( )x, , для 
которой имеется уравнение с  твердой матема-
тической основой. 

Результат феноменологического модели-
рования отдельных членов уравнений (81)–
(83) приводит к  следующим уравнениям для 
K t W t( ), ( )x x, ,  и H t( )x,  (сравни с Yokoi, Yoshizawa, 
1993; Yoshizawa, 1998; 2002; Yoshizawa и др., 2004; 
Yokoi, 2011; 2013):
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Здесь σ σ σK W H W H HR HBC C C C, , , , , ,  – модель-
ные константы, которые пока плохо опреде
лены. 

Модельные уравнения для скоростей диссипации 
εK t( )x,  и εW t( )x,

Величина диссипации ε ε ν λ( ) ( ) ( ) ( )Mx x u B, ,t tK= = ∇ ′ + ∇ ′2 2 
ε ε ν λ( ) ( ) ( ) ( )Mx x u B, ,t tK= = ∇ ′ + ∇ ′2 2  подчиняется уравнению 

с довольно сложной математической структурой, 
поскольку она не связана с законом сохранения, 
в  отличие от  спиральных характеристик турбу-
лентного течения K t( )x,  и W t( )x, . В связи с этим 
в качестве модельного уравнения для ε( )x,t  в на-
учной литературе рекомендовано использовать 
феноменологическое уравнение (см., например, 
Yoshizawa, Yokoi, 1993)
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поскольку его тестирование для различных гео- 
и астрофизических турбулентных МГД-потоков 
показало, что оно является вполне приемлемой 
моделью. Здесь Cε1 1 4= . , Cε2 1 9= . , σε = 1 6. . Сле-
дует, однако, заметить, что моделирование урав-
нения для диссипации ε( )x,t  до сих пор остается 
важной проблемой при моделировании гидро-
магнитной турбулентности.

В качестве модельного уравнения для 
ε ν λW t( ) : ( ) :Mx u B, = + ∇ ′ ∇ ′  в научной литерату-
ре рекомендовано использовать следующее фе-
номенологическое уравнение (Yokoi, 2011):
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где C
Wε 1 1 4= . , C

Wε 2 1 4= . , σεW
= 1 0. .

Важно также отметить, что модельные уравне-
ния для несжимаемой плазмы, аналогичные урав-
нениям (84)–(88), объединенные с соответствую-
щими уравнениями для средних полей скорости 
〈 〉u  и  магнитного поля B, успешно применялись 
для анализа различных тороидальных магнитных 
полей как в  динамике плазмы с  управляемым 
термоядерным синтезом в  токамаках (Yoshizawa 
и др., 1999b), так и в астрофизическом контексте, 
например, в аккреционных дисках при учете эф-
фекта поперечной спиральности (между состоя-
ниями с полоидальным вращением плазмы и без 
него), который генерирует перпендикулярное 
диску тороидальное магнитное поле, позволяю-
щее, в частности, газу выходить из диска в виде 
биполярных струй (Yoshizawa, Yokoi, 1993). При 
этом скорость струй в протопланетных системах 
была оценена с помощью численного моделиро-
вания (см. Hamba, 1992; Yokoi, 1996).

Эволюционное уравнение для остаточной энергии 
турбулентности K tR ( )x,

Турбулентная остаточная энергия 
K tR ( ): /x u B, � � � � � �1

2
2 2

0 0� �  также является од-
ной из  фундаментальных величин в  системе 
осредненных уравнений МГД. Она входит в за-
мыкающее соотношение (6) для кинетического 
тензора Рейнольдса R xК t( ),  для плазмы, а также 
является одной из основных корреляций, кото-
рую необходимо учитывать при моделировании 
гидромагнитной турбулентности, поскольку 
плазменные явления обнаруживают, как прави-
ло, значительное различие между кинетической 
и магнитной энергиями.

Дифференциальная форма эволюционного 
уравнения для корреляции K tR ( ),x, которая лег-
ко может быть получена при использовании ба-
лансового уравнения для турбулентной энергии 
вещества плазмы K tu( ) : /x u, = 〈 ′ 〉2

02ρ  и  урав-
нения для турбулентной магнитной энергии 
K tB( ) : /x B, = 〈 ′ 〉2

0 02µ ρ , имеет следующий мо-
дельный вид (Yokoi, 2006): 
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где CR R. , 0 01 1σ . Эволюция корреляци-
онной величины K tR ( )x,  должна определяться 
одновременно с  динамикой турбулентной ги-
дромагнитной энергии K t( )x, , со  скоростью ее 
диссипации ε( )x,t  и  с поперечной спирально-
стью W t( )x, .

Из уравнения (89) могут быть сделаны следу-
ющие выводы. Во-первых, в  присутствии сред-
него магнитного поля происходит разрушение 
корреляции K tR ( )x,  благодаря эффекту Альвена, 
обусловленному полем B (Parker, 1955); этот эф-
фект выражается частью второго члена справа 
уравнения (89), умноженной на CR. Во-вторых, 
диссипация величины K tR ( )x,  вызвана вихре-
выми искажениями, представленными частью 
второго члена, умноженной на  ε/K . В-третьих, 
отклонения от  эквипартиции (равного распре-
деления энергии по  степеням свободы) могут 
быть вызваны неоднородностью осредненной 
скорости и  магнитного поля через второй член 
справа, умноженный на νK . 

Изучение структуры этого уравнения по-
казывает, что эволюция масштабированной 
остаточной энергии связана с  перекрестной 
спиральностью (корреляцией скорости и  маг-
нитного поля) турбулентности в  сочетании 
со сдвигами среднего поля. Приложение к сол-
нечному ветру показало, что масштабированное 
значение K tR ( )x,  может быть увеличено вблизи 
внешней стороны точки Альвена во внутренней 
гелиосфере, тогда как во  внешней гелиосфере 
предполагается почти стационарное поведение 
K tR ( )x, . Эти результаты согласуются с наблюде-
ниями турбулентности солнечного ветра (Yokoi, 
Hamba, 2007).

Безразмерные физические параметры, 
характеризующие вращающуюся жидкость

Из уравнений (1)–(4) следует, что условия 
подобия течений электропроводных сред опре-
деляются рядом безразмерных параметров, 
от  которых сильно зависит специфика рассма-
триваемого явления. 

Наиболее известным безразмерным параме-
тром является число Рейнольдса 
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где LRи uR  – характеристическая длина и  ско-
рость потока. Большое Re означает, что эффект 
адвекции или инерции доминирует на  шка-
ле длинLR и  связанной с  ней шкале скоростей 
uR, по  сравнению с  эффектом молекулярной 

диффузии. Этот факт не  означает, что послед-
ний эффект не  важен при больших Re, но  что 
он  может стать важным на  пространственном 
масштабе, гораздо меньшем, чем LR, т.е. на про-
странственном масштабе вихрей lD = −ν ε3 4 1 4/ / , 
рассеивающих энергию. 

Аналогом числа Re в магнитном поле являет-
ся магнитное число Рейнольдса 

	 Re
L u

RePr
L u

L u

R RR R

R R

M
,

M , M
M

(
=

∇ × ×{ }
∆{ } = =
u B

Bλ λ
,	(91)

где PrM M� � �/  - магнитное число Прандтля. 
Насколько быстрым должно быть враще-

ние, чтобы эффект анизотропии турбулентно-
сти стал важным? Подходящей безразмерной 
мерой, связанной с силой Кориолиса, является 
обратное число Россби. Вращение среды с угло-
вой скоростью � � ��0  задает масштаб времени 
в системе. Основной величиной, возбуждающей 
турбулентность, остается скорость генерации/
диссипации кинетической энергии пульсаци-
онной скорости ε, которая может возбуждаться 
либо механически, либо системой источников 
и  стоков, имеющих место в  системе. Анализ 
размерностей дает следующие масштабы дли-
ны L� �:� �/ 3  и  скорости u� �:� �/ . Когда 
существенна кинематическая вязкость, то мож-
но ввести и  вращательное число Рейнольдса 
Re u LΩ Ω Ω: /= ν � � �/ �� 2 и  обратное вращатель-
ное число Россби 

	 Ro L u l− = = =1 1 2 1 22 2 2: / // /Ω Ω ΩΩ Ω Ω ε τ.	(92)

На практике τ часто аппроксимируется вре-
менем оборота, � � L u� �/ , где τ соответствует 
времени релаксации. В  таблице приведены не-
которые оценки Ro-1 для различных астрофизи-
ческих тел (Brandenburg, Kandaswamy, 2005).

Для Солнца Ro-1 составляет около пяти 
в  нижней части конвективной зоны (но стре-
мится к нулю в поверхностных слоях). В галак-
тиках, а  также в  протонейтронных звездах Ro-1 
меньше (около единицы). Аккреционные ди-
ски, как правило, имеют большие значения Ro-1 
(около 100). Это прямое следствие того, что здесь 
турбулентность слабая, что выражается в малом 
значении параметра вязкости Шакуры–Сюня-
ева (αSS ≈ 0.01). Планеты также имеют тенден-
цию к большим значения Ro-1, поскольку здесь 
турбулентность обусловлена слабым конвектив-
ным потоком, поэтому время оборота велико 
по сравнению с периодом вращения.

Безразмерным параметром, связанным с си-
лой Кориолиса, является также число Тейлора
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Для выяснения физического смысла числа 
Тейлора Ta отбросим силы Лоренца и плавучести 
в уравнении движения (2) и возьмем его ротор. 
Тогда для стационарного состояния и  в случае 
пренебрежения членом молекулярной диффузии, 
получим � � � �� ��� �� �u �� ��2 00 . В случае сильного 
эффекта Кориолиса, когда T Rea >> ,это уравнение 
сводится к  условию ��0 0� �� � �u , а  это означает, 
что движение жидкости не  меняется вдоль оси 
вращения координат, т.е. становится двумер-
ным вдоль оси вращения ΩΩ0 (теорема Тейло-
ра–Праудмана). Теорема Тейлора–Праудмана 
становится важной в  области сферической или 
сферооболочечной области, где сила плавучести 
в  радиальном направлении является основной 
причиной движения жидкости. Следует отме-
тить важность роли эффектов силы Кориолиса 
или спиральности в геодинамо вследствие того, 
что T Rea >> .

Сила плавучести характеризуется числом Рэ-
лея в приближении Буссинеска
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где δTR  – характерная разность температур для 
величины ( )T TR- ; Pr � � ��/   – число Пранд-
тля; при этом характеристическая скорость, 
связанная с  силой плавучести, оценивается 
как u gL TR T R R= α δ . Эта сила движет жидкость 

от внутренней к внешней части области. С уве-
личением числа Тейлора Ta сгусток жидкости 
в одном месте захватывается вокруг оси, прохо-
дящей вдоль вектора ΩΩ0. В результате жидкость 
при вращении поднимается или опускается 
вдоль этой оси. Другими словами, она подверга-
ется спиральному движению (аналогичная ситу-
ация может наблюдаться при движении заряжен-
ной частицы вокруг линии магнитного поля). 
Такое движение жидкости представляет собой 
так называемые конвективные колонны, кото-
рые характеризуются спиральностью.

ЗАКЛЮЧЕНИЕ

Представленная работа направлена на моде-
лирование эффектов сжимаемости в турбулент-
ных потоках космической спиральной плазмы 
и  термоядерной плазмы. Ее основной целью 
является моделирование влияния сжимаемости 
и вращения на динамические процессы в гидро-
магнитной турбулентности, в  частности, такие 
как генерация наведенного магнитного поля, 
образование турбулентной энергии плазмы и их 
диссипация, перекачка энергии из одной формы 
в другую и т.д. 

Практический анализ турбулентных потоков 
почти всегда начинается с  процедуры осредне-
ния, при котором поля структурных параметров 
разлагаются на сумму средних и флуктуирующих 
частей. Центральная проблема турбулентности 
состоит в этом случае в том, чтобы найти правдо-
подобный, если не строгий, способ моделирова-
ния турбулентного тензора Рейнольдса и других 

Таблица. Сводка угловых скоростей, расчетных времен обращения и результирующего обратного числа 
Россби для различных астрофизических тел

Астрофизические 
объекты Ω [с–1] τ Ro− =1 2Ωτ

Протонейтронные звезды 2 × 103 10–3 с 2

Диски вокруг 
нейтронных звезд 10–2 104 с 200

Юпитер 2 × 10–4 106 с 200

Звезды типа тау Тельца 2 × 10–5 106 40

Солнечная конвективная 
зона 3 × 10–6 106 с 6

Протозвездные диски 2 × 10–7 109 с 400

Галактика 10–15 107 лет 0.6
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важных корреляционных функций с тем, чтобы 
осредненные гидромагнитные уравнения стали 
(по крайней мере в  принципе) разрешимыми. 
Под термином “моделирование гидромагнитной 
турбулентности” в  работе понимается постро-
ение схемы замыкания, которая обеспечивает 
детерминированный набор уравнений эволюции 
для средних величин, при котором все случайные 
флуктуации усреднены и  число “неизвестных” 
равно порядку системы эволюционных урав-
нений, построенных для их определения. Эти 
уравнения должны, конечно, быть дополнены 
граничными условиями, подходящими для кон-
кретной геометрии рассматриваемого явления.

Одна из целей данной работы состоит в при-
менении комбинированного метода моделиро-
вания сжимаемой гиротропной гидромагнитной 
турбулентности, основанного на  термодинами-
ческом выводе замкнутой системы осредненных 
МГД-уравнений с  привлечением модельных 
уравнений для коэффициентов переноса, по-
лученных астрофизиками Акирой Йошизавой 
и  Нобумицу Йокои на  основе статистического 
подхода для моделирования несжимаемой тур-
булентности. Нужно отметить, что в целом ряде 
работ по  теории моделирования несжимаемой 
спиральной турбулентности (в частности, при 
моделировании эффекта динамо  – спонтанной 
генерации крупномасштабного магнитного поля 
мелкомасштабной турбулентностью) именно эти 
авторы впервые ввели в рассмотрение использу-
емые в данной работе дескрипторы МГД-турбу-
лентности (к которым относятся: турбулентная 
МГД-энергия, турбулентная поперечная спи-
ральность и  турбулентная остаточная спираль-
ность), для которых статистическими методами 
ими были получены дифференциальные урав-
нения для этих величин, связанные с динамикой 
средних гидромагнитных полей. В  дальнейшем 
этот подход с  успехом был использован многи-
ми астрофизиками при моделировании важных 
плазменных явлений, в частности: эволюции ги-
дромагнитной турбулентности в солнечном ветре 
и генерации среднего потока в присутствии сред-
него магнитного поля и поперечной спирально-
сти в плазме токамака (Yoshizawa и др., 1999b).

В представленном исследовании этот подход 
обобщается на случай сжимаемой электропрово-
дной жидкости, поскольку влияние сжимаемо-
сти на турбулентную вязкость и диффузионный 
перенос необходимо учитывать (в общем случае) 
при изучении высокоскоростной спиральной 
турбулентности. Таким образом, главной целью 
предпринятого исследования является попытка 

феноменологического конструирования моде-
лей сжимаемой гидромагнитной турбулентно-
сти, которые способны работать в гиперзвуковом 
режиме. Результаты численной реализации (в ус-
ловиях устойчивой турбулентности) модели ги-
дромагнитного динамо для аккреционного диска 
в рамках намеченного здесь подхода к исследова-
нию сжимаемой спиральной турбулентности бу-
дут представлены в последующих публикациях.

Работа поддерживалась постоянным финан-
сированием Института прикладной математики 
им. М.В. Келдыша РАН. Никаких дополнитель-
ных грантов на проведение или руководство этим 
конкретным исследованием получено не было.
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