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ВВЕДЕНИЕ

Солнце является источником электромаг-
нитного излучения в  широком диапазоне ча-
стот и  энергий. В  настоящее время проводятся 
наземные и внеатмосферные наблюдения излу-
чения практически во  всем солнечном спектре 
(Domingo и др., 1995; Davila и др., 1996; Howard 
и др., 2013; Kinnison и др., 2020) за исключением 
излучения терагерцевого диапазона, так как оно 
практически полностью поглощается земной 
атмосферой, кроме окна прозрачности c цен-
тральной частотой около 30 ТГц (Kaufmann и др., 
2015). Космический эксперимент “Солнце-Те-
рагерц” направлен на исследование вспышечно-
го излучения Солнца в терагерцевом диапазоне 
(Калинин и  др., 2021). Главная цель экспери-
мента  – получение новых экспериментальных 
данных для разработки и дальнейшего развития 
моделей физического механизма возникновения 

мощных солнечных протонных вспышек и  их 
прогнозирование (Kaufmann и  др., 1985; 2001; 
2003; 2004; Kaufmann, 1996; Makhmutov и  др., 
2003; Luthi и  др., 2004; Махмутов и  др., 2011; 
Krucker и  др., 2013). В  ходе проведения косми-
ческого эксперимента “Солнце-Терагерц” будет 
исследоваться терагерцевое излучение Солнца 
с  целью определения физического механизма 
солнечных вспышек и развития метода их про-
гнозирования.

Изучение солнечных вспышек на  различ-
ных частотах позволяет исследовать процессы, 
происходящие на  разных уровнях солнечной 
атмосферы. Например, данные по субмиллиме-
тровому излучению Солнца позволяют изучать 
процессы ускорения и  переноса потоков энер-
гичных электронов в  нижних слоях солнечной 
атмосферы от переходной области до хромосфе-
ры (Wedemeyer и др., 2016). Некоторые вспыш-
ки имеют второй спектральный компонент: 
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вместо ожидаемого уменьшения потоков гиро-
синхротронного излучения с  ростом частоты 
наблюдается их рост на  частотах 212 ГГц, 405 
ГГц и выше (Kaufmann и др., 2004; Krucker и др., 
2013). Получение новых экспериментальных 
данных, особенно в  терагерцевом диапазоне 
волн порядка 1–10 ТГц, позволит изучить ха-
рактеристики и  физическую природу этой осо-
бенности частотного спектра, определить часто-
ту, на  которой происходят изменения наклона 
спектра в различных солнечных вспышках.

АППАРАТУРА ДЛЯ ЭКСПЕРИМЕНТА 
“СОЛНЦЕ-ТЕРАГЕРЦ”

Научная аппаратура “Солнце-Терагерц” 
(рис. 1) состоит из восьми детектирующих кана-
лов (детекторов), чувствительных к  излучению 
в окрестности частот 0.4; 0.7; 1.0; 3.0; 5.0; 7.0; 10.0 
и 12.0 ТГц.

В состав каждого детектора излучения входят 
следующие компоненты:

– оптический телескоп (Квашнин и  др., 
2021), концентрирующий излучение в  прием-
ник;

– система последовательных фильтров, про-
пускающая излучение в  заданном частотном 
диапазоне для каждого приемника, которая со-
стоит из отрезающего фильтра LPF 23.1 (https://
www.tydexoptics.com/pdf/ru/THz_Low_Pass_
Filter.pdf) и  полосового фильтра BPF (http://
www.tydexoptics.com/ru/products/tgc-ustrojstva/

thz_band_pass_filter/) и  обеспечивает таким об-
разом селективность;

– оптический прерыватель, модулирующий 
излучение во входном окне приемника с часто-
той 10 Гц (Филиппов и др., 2023а);

– приемник, в  корпусе которого разме-
щен оптоакустический преобразователь (ОАП) 
“ячейка Голея” и  усилитель (Кропотов, Кауф-
манн, 2013; Kaufmann и  др., 2014; Филиппов 
и др., 2023б; 2024а; 2024б).

Блок электроники научной аппаратуры 
представляет собой совокупность электронных 
плат, обеспечивающих: питание, усиление сиг-
налов ОАП, оцифровку, первичную обработку 
и передачу данных на борт МКС и т.д. (Филип-
пов и др., 2023в).

Бортовая реализация космического экспе-
римента “Солнце-Терагерц” запланирована 
на 2025–2027 гг.

Вспомогательная аппаратура, задейство-
ванная в  эксперименте, включает в  себя одно-
канальный макет детектора и  ИЧТ  – имитатор 
черного тела (Филиппов и др., 2023б).

ЧУВСТВИТЕЛЬНОСТЬ ПРИЕМНИКОВ 
ЛЕТНОГО ОБРАЗЦА НАУЧНОЙ 

АППАРАТУРЫ

При помощи одноканального макета для 
приемника проведена серия измерений размаха 
шумового сигнала (с установленной алюмини-
евой заглушкой во  входное окно испытуемого 

Рис. 1. Фотография научной аппаратуры “Солнце-Терагерц”: вид со стороны лицевой панели. Показаны входные 
окна телескопов, малые и большие зеркала.
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приемника) при различных комнатных темпе-
ратурах. Данные приведены в табл. 1. В первом 
столбце  – номер измерения, во  втором столб-
це  – средняя температура на  корпусе ОАП, 
в  третьем столбце  – средний размах шумового 
сигнала приемника. В  последней строке (1–7) 
приведены результаты, полученные по совокуп-
ности семи измерений.

Как видно, корреляция между температурой 
на  корпусе ОАП и  размахом шумового сигнала 
(при изменении температуры в  интервале 4°C) 
отсутствует, поэтому далее собственные шумы 
приемника, обусловленные, в  первую очередь, 
усилителем, будут считаться постоянными 
в пределах рабочих температур ОАП, а измерен-
ное усредненное значение собственных шумов 
приемника: UG (шум) = (38.42 ± 21.77) мВ.

Таким образом, можно оценить минималь-
ный сигнал, к  которому чувствительны прием-
ники аппаратуры, как величину UG (шум).

ПРОВЕРКА СПЕКТРАЛЬНЫХ 
ХАРАКТЕРИСТИК ДЕТЕКТОРА 

С ПОМОЩЬЮ ОДНОКАНАЛЬНОГО 
МАКЕТА И ИЧТ В ДИАПАЗОНЕ 0.4–20 ТГЦ

В данном эксперименте была исследована 
зависимость выходного сигнала приемника при 
фиксированной температуре излучателя ИЧТ: 
Tbb = 873 К  для случаев одиночного и  двойного 
установленных фильтров LPF 23.1.

Суть метода заключается в измерении отно-
шения размаха сигналов приемника для одиноч-
ного отрезающего фильтра LPF 23.1 при макси-
мально большой температуре, которую может 

поддерживать ИЧТ в  течение длительного вре-
мени (UG �(873 К)) и размаха сигналов приемника 
для двойного (два последовательных комплекта) 
отрезающего фильтра LPF 23.1 (UG

1 �(873 К)).
Так как сигнал приемника пропорционален 

величине входного потока излучения, то  мож-
но предполагать, что отношение размаха сиг-
налов приемника будет равно отношению рас-
четных потоков излучения для одиночного 
(Ф КR 873 �� �) и  двойного отрезающего фильтра 
LPF 23.1 (Ф КR

1 873 �� �).
В оптические тракты детекторов входят: те-

лескоп с двумя зеркалами, отрезающий фильтр 
LPF 23.1, полосовой фильтр BPF, также влия-
ние оказывает спектральная характеристика 
входного окна ОАП. Результирующая спек-
тральная характеристика оптического тракта 
получается путем перемножения спектральных 
характеристик пропускания и  отражения (для 
зеркал). Спектральные характеристики как за-
висимость коэффициента пропускания или от-
ражения от  длины волны излучения получены 
в ООО “Тидекс”. Спектры пропускания отреза-
ющего фильтра LPF 23.1 и полосовых фильтров 
BPF 1.0–BPF 12.0 были измерены с  помощью 
спектрометра Bruker VERTEX 70, а  спектры 
полосовых фильтров BPF 0.4 и  BPF 0.7 изме-
рены с  помощью спектрометра Menlo Systems 
TERA K8 (Кропотов и др., 2023). Для снижения 
влияния инструментальных шумов, измерения 
проводятся четыре раза и, далее, усредняют-
ся в каждой точке. Таким образом, получается 
исходная спектральная характеристика. Да-
лее исходные файлы характеристик от  сетки 
длин волн приводятся к  сетке частот с  шагом 
0.01 ТГц (промежуточные значения получены 
линейной интерполяцией) в  диапазоне от  0.01 
до 2000 ТГц.

Уровень инструментальных шумов измери-
тельной аппаратуры оценен следующем обра-
зом: рассмотрены участки спектров, на которых 
спектральные коэффициенты пропускания (или 
отражения) исследуемых образцов стремятся 
к  нулю. Среди близких к  нулю значений также 
встречаются отрицательные величины, являю-
щиеся следствием инструментальных шумов, 
либо смещения в  усилительных каскадах изме-
рительной аппаратуры. Характерная величина: 
5 × 10–4 отн. ед.

Так как спектральная плотность потоков из-
лучения спокойной атмосферы Солнца возрас-
тает с ростом частоты, умножение малых вели-
чин спектрального коэффициента пропускания, 
являющегося инструментальными шумами, 

Таблица 1. Измеренные значения размаха шумового 
сигнала для приемника № GC00284 при различных 
температурах корпуса ОАП

Номер 
измерения TG, ℃ UG (шум), мВ

1 21.92 ± 0.27 38.75 ± 21.91

2 22.55 ± 0.27 38.69 ± 22.14

3 23.15 ± 0.25 38.50 ± 21.76

4 23.69 ± 0.22 38.77 ± 21.84

5 24.22 ± 0.24 38.82 ± 22.04

6 25.07 ± 0.30 38.15 ± 21.59

7 25.96 ± 0.21 37.99 ± 21.64

1–7 24.14 ± 1.23 38.42 ± 21.77
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на большие величины плотностей потоков излу-
чения может дать существенный вклад в ошибку 
расчетных потоков солнечного излучения. Для 
снижения данного эффекта каждая спектраль-
ная характеристика проходит дополнительную 
обработку: из каждой точки вычитается величи-
на 5 × 10–4, после чего все отрицательные значе-
ния приравниваются нулю.

Возвращаясь к методу измерения отношения 
размахов сигналов для одиночного и  двойного 
фильтров LPF 23.1 в  оптическом тракте детек-
тора: для компенсации температурного эффекта 
ОАП все измеренные значения следует приво-
дить к одинаковой температуре на корпусе ОАП 
согласно формуле (1) (Филиппов и др., 2024б)

	 U T T
U T T

TG bb G
G bb G

G G
,

,
,2

1

1
� � � � �

� � �
,	 (1)

где� � T Tbb G, 01( )  – измеренный размах сиг-
нала приемника (мВ) при температу-
ре излучателя ИЧТ: � �Tbb и  температуре TG1 
на  корпусе ОАП, мВ; �U T TG bb G, 2( )  – поправ-
ленный на  температуру размах сигнала при-
емника (мВ); �∆TG = T TG G2 1− ; � �TG2 = 25°C;
�γ G = (–3.52 ± 0.06)% на 1°C.

Однако, как было показано в  табл.  1, соб-
ственные шумы приемника практически не за-
висят от температуры. Таким образом, для повы-
шения точности расчета размах сигнала следует 
условно разделить на два компонента: полезный 
сигнал и  характерный постоянный шумовой 
сигнал – и производить температурную поправ-
ку только на разницу полезного и шумового сиг-
нала. Формула (1) с учетом шумового компонен-
та сигнала принимает следующий вид:
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где� �UG шум( ) = (38.42 ± 21.77) мВ.
Среднеквадратичное отклонение �σU T TG bb G, 2( ) 

�σU T TG bb G, 2( ) размаха сигнала приемника при темпе-
ратуре TG2 = 25°C на  корпусе ОАП пересчи-
тывается из  среднеквадратичного отклонения 
σU T TG bb G, 1( ) размаха сигнала при температуре 
TG1 на корпусе ОАП аналогично:

σ
σ γ σ

γ
U T T

U T T T U

TG bb G
G bb G G G G

G G

шум
,

,
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1

1
( ) =

( ) − ( )
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∆
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	(3)

Также следует отметить, что помимо того, что 
излучатель ИЧТ не является абсолютно черным 
телом (степень черноты в  терагерцевом диапа-
зоне волн не менее 0.88), необходимо учитывать 
воздушную прослойку (примерно 0.6 м) между 
излучающим элементом ИЧТ и входным окном 

приемника, так как терагерцевое излучение 
в диапазоне 1–10 ТГц испытывает существенное 
(от 100 дБ/км до более чем 100000 дБ/км в зави-
симости от частоты) ослабление вследствие по-
глощения на молекулах воздуха (Cui и др., 2011; 
Yasuko, Takamasa, 2008).

Поток излучения от ИЧТ, проходящий через 
входное окно приемника ФR (Вт), равен

	 ФR bb tel bbT S d r T t a d� � � � � � � � � � ���
�

� � � � �
1

2
, , 	 (4)

где Stel  – площадь входного окна телескопа 
(Stel � �=  3.84 × 10–3 м2); �ν  – частота излучения 
(в  Гц) ( ν1  = 0.01 ТГц, ν2  = 2000 ТГц); d �� �  – 
спектральный коэффициент дифракционных 
потерь на  зеркалах телескопа; �r Tν, bb( )  – спек-
тральная плотность излучения на единицу пло-
щади в  интервале частот (ν ν; � d ), Вт/(м2 × Гц); 
�t ν( )  – коэффициент пропускания оптического 
тракта детектора: телескоп, система фильтров 
и  входное окно ОАП; �a ν( )  – спектральный ко-
эффициент, определяющий поглощение излуче-
ния в воздухе.

На рис.  2 приведены спектры пропуска-
ния оптических трактов детекторов на  0.4; 5.0; 
и  10.0  ТГц при использовании одиночного от-
резающего фильтра LPF 23.1 (синяя кривая) 
и  двойного фильтра LPF 23.1 (красная кривая) 
с учетом поглощения излучения в воздухе.

Можно сделать предварительные выводы, 
что для каналов на 0.4, 0.7 и 1.0 ТГц при исполь-
зовании двойного фильтра LPF 23.1 коэффи-
циент пропускания ослабевает в  пределах 70%, 
однако селективность каналов по частоте излу-
чения резко возрастает. Поэтому для данных ка-
налов возможно использовать двойной фильтр 
LPF 23.1 как штатный в научной аппаратуре. Для 
каналов на 3.0, 5.0, 7.0 ТГц применение двойно-
го фильтра LPF 23.1 было бы не целесообразно, 
но возможно. Для каналов на 10.0 и 12.0 ТГц вви-
ду крайне низкого коэффициента пропускания 
и смещения его в нецелевую область частот – ис-
пользование двойного фильтра LPF 23.1 невоз-
можно.

В табл.  2 приведены результаты измере-
ний размаха сигнала приемника с  одиночным 
и двойным отрезающими фильтрами. В первом 
столбце приведены номера каналов. Во втором 
столбце – измеренное значение размаха сигнала 
приемника (UG, мВ) при температуре излучателя 
ИЧТ Tbb = 873 К, одиночном полосовом фильтре 
и температуре на корпусе ОАП 25°C. В третьем 
столбце – измеренное значение размаха сигнала 
приемника (UG

1 , мВ) при температуре излучателя 
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ИЧТ Tbb = 873 К, двойном полосовом фильтре 
и температуре на корпусе ОАП 25°C. В качестве 
измеренных значений размаха сигнала взяты 
средние значения, полученные за  время экс-
перимента и  приведенные к  температуре 25°C 
по формуле (2). В четвертом столбце приведено 
отношение размаха сигнала при установлен-
ном одиночном отрезающем фильтре LPF 23.1 
к  размаху сигнала при установленном двой-
ном фильтре LPF 23.1. В  пятом столбце приве-
дено рассчитанное по  формуле (4) отношение 
потока излучения от  ИЧТ при установленном 

одиночном отрезающим фильтре LPF 23.1 к по-
току излучения при установленном двойном 
фильтре LPF 23.1, рассчитанные в  диапазоне 
0.01–2000 ТГц. В  шестом столбце приведено 
отношение расчетных значений потоков из-
лучения от  ИЧТ при температуре Tbb = 873 К 
и  установленном одиночном фильтре LPF 
23.1.� � � �Ф КR

2 873� �– поток излучения от  ИЧТ, по-
ступающий в  ОАП, рассчитанный в  диапазоне 
частот 0.01–20 ТГц. Ф КR 873 � � �� �– поток излуче-
ния от ИЧТ, поступающий в ОАП и рассчитан-
ный в диапазоне частот 0.01–2000 ТГц.

Рис. 2. Спектр пропускания оптических трактов детекторов с установленным одиночным фильтром LPF 23.1 (си-
няя кривая) и двойным фильтром LPF 23.1 (красная кривая) с учетом поглощения в воздухе: (а) – на 0.4 ТГц; (б) – 
на 5.0 ТГц; (в) – на 10.0 ТГц.
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Величина Ф КR
2 873 �� �/Ф КR 873 �� � близка к еди-

нице (0.98–0.99), таким образом, согласно рас-
чету, для каждого канала научная аппаратура 
чувствительна лишь к  излучению, лежащему 
в примерном диапазоне 0.01–20 ТГц. Оставше-
еся излучение от  ИЧТ практически полностью 
рассеивается элементами оптических трактов.

Отношение размахов сигналов с  достаточ-
ной точностью (в пределах среднеквадратичных 
отклонений) согласуется с  отношением входя-
щих потоков излучения. В  связи с  этим можно 
сделать вывод, что фактическая спектральная 
пропускная характеристика оптических трактов 
не  противоречит исходным измеренным и  рас-
четным параметрам.

ЗАКЛЮЧЕНИЕ

В данной работе приведено краткое опи-
сание научной аппаратуры для эксперимента 
“Солнце-Терагерц”, запланированного на борту 
российского сегмента МКС. Основной задачей 
эксперимента является исследование Солнца 
в терагерцевом диапазоне излучения.

Была разработана и  опробована методика 
проверки соответствия расчетных характеристик 
оптических трактов научной аппаратуры экспери-
ментальным данным. Данная методика пригодна 
для испытания приемников на базе ОАП “ячейка 
Голея” в любом целевом диапазоне частот.

Как показывают расчеты, научная аппа-
ратура чувствительна к  излучению в  диапазо-
не частот 0.01–20 ТГц, что удовлетворяет ус-
ловиям предстоящего эксперимента. С  учетом 
примерного (в пределах среднеквадратичных 
отклонений) равенства отношений U UG G/ 1  

и Ф КR 873 �� �/Ф КR
1 873 �� � можно сделать вывод, что 

отношение  Ф КR
2 873 �� �/ФR(873K) также рассчита-

но верно.
Эта работа финансировалась за счет бюджета 

организации. Никаких дополнительных грантов 
для выполнения этого исследования не получено.
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