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Рассмотрены результаты моделирования процесса убегания первичной атмосферы под воздей-
ствием теплового потока от ядра для экзопланеты HD 207496b. Показано, что данный механизм 
потери газовой оболочки недостаточно эффективен в  силу сравнительно невысокой равно-
весной температуры экзопланеты, а  также из-за относительно большой массы. Ранее для HD 
207496b была показана высокая эффективность фотоиспарения водородно-гелиевой атмосферы 
под воздействием жесткого УФ-излучения (Barros и др., 2023). Было продемонстрировано, что 
если HD 207496b обладает скалистым ядром без водной мантии, окруженным оболочкой первич-
ного состава, то масса атмосферы должна составлять около 0.5% массы экзопланеты, и оболочка 
будет полностью утрачена через ≈500 млн лет. В этом случае начальная массовая доля первичной 
атмосферы для HD 207496b должна была составлять порядка 2.2% (возраст экзопланеты – около 
520 млн лет). Однако механизм убегания под воздействием теплового потока от ядра не может 
в  данном случае привести к  заметной потере атмосферы. Вместе с  тем полученный результат 
сильно зависит от равновесной температуры и массы экзопланеты. Соответственно, HD 207496b 
может быть достаточно близка к границе, когда влияние теплового потока от ядра на эволюцию 
газовой оболочки становится существенным, а полученный результат – модельно зависимым. 
В этой связи целесообразно в дальнейших исследованиях учесть ряд дополнительных факторов: 
возможность наличия водной мантии, тепловой поток радиогенной природы, а также прилив-
ные эффекты. 
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ВВЕДЕНИЕ 

Изучение молодых экзопланет, радиусы 
которых соответствуют зазору Фултона (1.6–
1.8 R⊕) (Fulton и др., 2017), либо близки к нему, 
может дать важную информацию о  формиро-
вании планетных систем и  эволюции планет. 
В том числе, могут быть получены оценки:

– начальных массовых долей первичных во-
дородно-гелиевых (Н/Не) оболочек и  водных 
мантий в  зависимости от  типа родительской 
звезды, ее металличности, массы и орбитальных 
параметров экзопланет;

– темпов убегания оболочек первичного со-
става посредством различных физических меха-
низмов в  зависимости от  параметров экзопла-
неты, родительской звезды, а  также строения 
планетной системы (наличия других тел, спо-
собных оказывать влияние на  приливную эво-
люцию экзопланеты); 

– точного положения и ширины зазора Фулто-
на (который, вероятно, разделяет две популяции 
экзопланет  – мини-нептуны и  суперземли) в  за-
висимости от характеристик родительской звезды;

– остаточных значений массовой доли во-
дородно-гелиевых атмосфер, а  также водных 
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оболочек в  зависимости от  параметров роди-
тельской звезды, планеты и их возраста. 

Последний из  указанных пунктов важен 
с  точки зрения оценки потенциальной обитае-
мости экзопланет. Так, в  работе (Owen, Mo-
hanty, 2016) показано, что суперземли и  даже 
планеты с массами вплоть до 0.8–0.9 М⊕, нахо-
дясь в  классической зоне потенциальной оби-
таемости (Kasting и  др., 1993; Kopparapu и  др., 
2013) своих звезд, могут сохранить массивные 
Н/Не-оболочки, создающие на  поверхности 
планеты температуры и давления, не совмести-
мые с существованием известных форм жизни. 
С  другой стороны, наличие подобных, умерен-
ных по массе (с массовой долей от 10–5 до 10–3) 
первичных атмосфер способно обеспечить су-
ществование жидкой воды на поверхности экзо-
планет (суперземли, гикеаны), орбиты которых 
находятся значительно дальше от  родительской 
звезды, чем внешняя граница классической 
зоны потенциальной обитаемости (Madhusud-
han и др., 2021; Mol Lous и др., 2022). 

Характерным примером молодой экзоплане-
ты, относящейся к классу мини-нептунов (име-
ют массы до 10 М⊕ при радиусе – от 2 до 4 R⊕) 
и находящейся вблизи зазора Фултона, являет-
ся HD 207496b (TOI-1099), открытая в  2023 г., 
в ходе миссии TESS (Barros и др., 2023). Данная 
экзопланета и  ее родительская звезда были ис-
следованы с  помощью ряда космических и  на-
земных инструментов (TESS, Gaia, GALEX, 
LCOGT, HARPS, SOAR, Gemini), что позволи-
ло с достаточно высокой точностью определить 
параметры HD 207496b, предложить варианты ее 
внутреннего строения и оценить темпы убегания 

атмосферы в  настоящий момент и  в прошлом 
(Barros и др., 2023). 

Темпы потери Н/Не-оболочки, и, соответ-
ственно, ее начальная и  современная массовые 
доли оценивались в  (Barros и др., 2023), исходя 
из ведущей роли фотоиспарения, т.е. потери ат-
мосферы под воздействием жесткого (XUV) из-
лучения звезды в мягком рентгеновском (X-rays, 
1–10 нм) и  крайнем ультрафиолетовом (EUV, 
10–100 нм) диапазонах. Другие механизмы 
не рассматривались. В настоящей работе изучена 
возможность убегания атмосферы HD 207496b 
под воздействием теплового потока от ядра. Этот 
процесс в ряде случаев может быть не менее эф-
фективным, чем фотоиспарение, и  также отве-
чать за формирование зазора Фултона (Ginzburg 
и  др., 2018). В  реальности указанные процессы 
могут дополнять друг друга, действуя на различ-
ных эволюционных стадиях (Owen, Schlichting, 
2024). В  этой связи целесообразно исследовать 
подверженность гипотетической Н/Не-оболоч-
ки HD 207496b убеганию под воздействием ука-
занного альтернативного механизма. 

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ 
И МОДЕЛИ ВНУТРЕННЕГО СТРОЕНИЯ 

HD207496B

В соответствии с  данными, приведенными 
в (Barros и др., 2023; табл. 1), мини-нептун с яв-
лениями транзита HD 207496b (TOI-1099) обра-
щается вокруг родительской звезды спектраль-
ного класса K2.5V, находящейся на  расстоянии 
23.638 ± 0.012  пк и  обладающей следующими 
основными характеристиками: масса звезды 
0.80 ± 0.04  Mʘ, радиус 0.769 ± 0.026 Rʘ, возраст 
0.52 ± 0.26 млрд лет. 

Основные характеристики экзопланеты 
и параметры ее орбиты, полученные в результа-
те обработки данных наблюдений (Barros и др., 
2023), представлены в таблице. 

Относительно невысокая средняя плот-
ность планеты указывает на наличие в ее составе 
значительного количества летучих элементов. 
В статье (Barros и др., 2023) рассматриваются два 
возможных варианта строения планеты  – ска-
листое (железно-силикатное) ядро, окруженное 
протяженной газовой оболочкой первичного, 
водородно-гелиевого состава, а  также практи-
чески лишенный атмосферы водный мир – оке-
анида, имеющая железное ядро, силикатную 
мантию и  толстый водный слой, фазовое со-
стояние которого определяется термодинами-
ческими условиями. Эти варианты, очевидно, 

Таблица 1. Характеристики экзопланеты HD 207496b 
(Barros и др., 2023)

Параметр Значение

Масса планеты Мp, М⊕ 6.1 ± 1.6

Радиус планеты Rp, R⊕ 2 25 0 10
0 12. .

.
−
+

Средняя плотность ρp, г/см3 3 17 0 91
0 97. .

.
−
+

Равновесная температура 
Teq, К

743 ± 26

Период обращения Р, дни 6.441008 ± 0.000011

Большая полуось орбиты 
а, а. е. 0.0629 ± 0.0011

Эксцентриситет орбиты e 0 231 0 049
0 042. .

.
−
+
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являются крайними возможностями, а  модель 
внутреннего строения подобной экзопланеты 
неизбежно является вырожденной (Barros и др., 
2023): одним и тем же значениям массы и ради-
уса, определенного по транзиту, могут соответ-
ствовать разные доли воды и  Н/Не-атмосферы 
в  составе экзопланеты. Вероятно, HD 207496b 
обладает как водным слоем, так и  достаточно 
массивной газовой оболочкой. Тем не  менее 
на  данном этапе исследований целесообразно 
изучить крайние возможные варианты строе-
ния, соответствующие различным сценариям 
убегания атмосферы. 

В работе (Barros и  др., 2023) сделана оцен-
ка темпов испарения первичной атмосферы 
HD 207496b под воздействием звездного XUV-
излучения для обоих случаев. В  настоящей ра-
боте, при изучении процесса убегания газовой 
оболочки под воздействием теплового потока 
от  ядра, ограничимся первым случаем (безво-
дная планета). Для корректного сопоставле-
ния результатов расчета убегания атмосферы 
в  результате различных механизмов, восполь-
зуемся моделью внутреннего строения плане-
ты, приведенной в  статье (Barros и  др., 2023). 
При разработке данной модели авторы ис-
пользовали полуэмпирическую зависимость 
масса–радиус для скалистого ядра из  работы 
(Otegi и  др., 2020), а  также модель MESA для 
численного расчета атмосфер мини-нептунов 
(Chen, Rogers, 2016). В  итоге было получено, 
что наблюдаемый при транзите радиус 2.25 R⊕, 
который условно принимается за  границу ат-
мосферы, а  также масса 6.1 М⊕ соответствуют 
радиусу ядра Rc = 1.74 ± 0.14 R⊕ при его массе 
Мc = 6.07 ± 1.6  М⊕ и  высоте Н/Не-атмосферы 
0.51 ± 0.19 R⊕. Соответственно, отношение мас-
сы газовой оболочки к массе планеты:

	 f M M M M Menv env p p c p= = = ±( )– . . .0 005 0 004 	

Предельные отклонения рассчитаны с  уче-
том погрешностей определения характеристик 
планеты, родительской звезды и  орбитальных 
параметров. 

ВОЗМОЖНЫЕ МЕХАНИЗМЫ 
ПОТЕРИ ПЕРВИЧНЫХ АТМОСФЕР 

СУПЕРЗЕМЛЯМИ И МИНИ-НЕПТУНАМИ

Существует большое разнообразие физиче-
ских механизмов потери планетами своих газо-
вых оболочек (Shematovich, Marov, 2018). Дан-
ные механизмы могут быть разделены на  две 

основные группы  – тепловые и  нетепловые. 
Темпы тепловых потерь определяются темпе-
ратурой на экзобазе (Shematovich, Marov, 2018). 
В  нетепловых процессах частицы газа приоб-
ретают скорости убегания относительно пла-
неты за  счет различных эффектов, не  связан-
ных с внутренней тепловой энергией вещества. 
В  частности, возможны импактная эрозия ат-
мосферы при столкновении планет с крупными 
телами (Cameron, 1983; Ahrens, 1993; Genda, Abe, 
2005; Schlichting и  др., 2015), взаимодействие 
газа со звездным ветром (Cohen и др., 2011; Hazra 
и др., 2022), реакции атмосферной фотохимии, 
а также взаимодействие ионов с электрическими 
и магнитными полями (Marov и др., 1996; Shiz-
gal, Arkos, 1996; Shematovich, Marov, 2018). 

Для суперземель и  мининептунов ведущую 
роль должны играть тепловые процессы убега-
ния, поскольку именно с  ними связаны доста-
точно мощные источники энергии, способные 
обеспечить большой поток массы (Ginzburg 
и др., 2016; Micela и др., 2022). Эта группа про-
цессов может быть классифицирована по  ре-
жиму убегания (джинсовский и  гидродинами-
ческий режимы), а  также типу энергетического 
источника. Если атмосфера вблизи экзобазы на-
ходится в гидростатическом равновесии, то ло-
кальное распределение частиц по  скоростям 
следует распределению Максвелла и  процесс 
называется джинсовским убеганием (или испа-
рением атмосферы) (Chamberlain, 1962; Shizgal, 
Arkos, 1996; Johnson и  др., 2008; Shematovich, 
Marov, 2018). В противном случае возникает ги-
дродинамический отток (планетный ветер), ко-
торый может привести к  практически полной 
утрате первичной атмосферы. 

Источником энергии, обеспечивающим пре-
одоление газом гравитации планеты, может слу-
жить XUV-излучение родительской звезды (так 
называемое фотоиспарение) (Watson и др., 1981; 
Kasting, Pollack, 1983; Lammer и др., 2003; Tian, 
2015; Owen, 2019). Альтернативным источником 
может являться внутренний тепловой поток, 
связанный с  высокой температурой недр (Bier-
steker, Schlichting, 2019; 2021; Gupta, Schlichting, 
2019). Он обусловлен охлаждением и  сжатием 
планеты, распадом радиоактивных элементов, 
выделением приливного тепла и  т.п. (Mordasini 
и  др., 2012; Linder и  др., 2019; Mordasini, 2020; 
Mol Lous и др., 2022).

Оба указанных тепловых механизма актив-
но изучались применительно к  потере первич-
ных атмосфер суперземлями и мини-нептунами 
и, соответственно, к  их роли в  формировании 
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зазора Фултона. Как правило, оба механизма 
рассматривались по  отдельности (Erkaev и  др., 
2007; Murray-Clay и  др., 2009; Owen, Wu, 2013; 
Biersteker, Schlichting, 2019; 2021; Gupta, Schlicht-
ing, 2019). Однако, учитывая важность уточ-
нения физики атмосферных потерь для пони-
мания формирования популяций суперземель 
и  мини-нептунов, а  также свойств остаточных 
первичных, либо вторичных атмосфер (Zahnle, 
Kasting, 1986; Misener, Schlichting, 2021), была 
изучена и  возможность их совместного дей-
ствия (Modirrousta-Galian, Korenaga, 2023; Owen, 
Schlichting, 2024). Было показано, что указанные 
процессы могут доминировать на  различных 
эволюционных стадиях экзопланет, имея раз-
личные характерные временные шкалы. 

В этой связи при изучении эволюционной 
истории мини-нептуна HD 207496b представля-
ет интерес оценка темпов убегания атмосферы 
не  только в  связи с  фотоиспарением, но  и  под 
влиянием теплового потока от ядра. 

ОЦЕНКИ ТЕМПОВ ФОТОИСПАРЕНИЯ 
АТМОСФЕРЫ HD 207496B

Процесс фотоиспарения атмосферы обу-
словлен поглощением жесткого УФ-излучения 
верхними слоями газовой оболочки. В  резуль-
тате нагрева температура на экзобазе достигает 
значений, при которых формируется интенсив-
ный планетный ветер. 

Для оценки темпов фотоиспарения первич-
ной атмосферы HD 207496b в  работе (Barros 
и  др., 2023) были выполнены расчеты с  помо-
щью программного кода photoevolver code (Про-
граммный код для моделирования эволюции эк-
зопланет доступен на GitHub по адресу: https://
github.com/jorgefz/photoevolver). 

В качестве исходных данных для расчетов ис-
пользовалась модель зависимости потока XUV-
излучения звезды HD 207496 от времени. Данная 
модель была получена авторами работы (Barros 
и др., 2023) на основе зависимости потока рент-
геновского излучения от  периода вращения 
звезды, представленной в (Pizzolato и др., 2003; 
Wright и  др., 2011; 2018). Использовались так-
же модель эволюции периода вращения звезды 
(Johnstone и  др., 2021) и  связь между потоками 
мягкого рентгеновского и  УФ-излучения (King 
и др., 2018). Для уточнения и верификации мо-
дели привлекались данные о  текущем периоде 
вращения HD 207496, известном из наблюдений 
(12.36 ± 0.12 сут.), а также о рентгеновской свети-
мости в настоящее время по данным измерений 

на  ИСЗ ХММ-Newton (5.3+3.6
–1.6 × 1028  эрг/c 

в  диапазоне энергий от  0.1 до  2.4  кэВ). Необ-
ходимо отметить, что модель эволюции потока 
XUV-излучения дает достаточно большой раз-
брос для его величины в заданные моменты вре-
мени (см. рис. 13 в статье (Barros и др., 2023)), что 
связано не только с погрешностями самой моде-
ли, но и со значительной погрешностью в опре-
делении возраста звезды (см. выше). 

Алгоритм photoevolver code включает модель, 
позволяющую рассчитать атмосферные поте-
ри на основе данных о потоке XUV-излучения, 
а  также модель Н/Не-оболочки планеты, не-
обходимую для расчета текущих значений ее 
внешнего радиуса. Модель убегания атмосфе-
ры заимствована из  (Kubyshkina, Fossati, 2021) 
и базируется на гидродинамических численных 
расчетах, а в качестве модели строения газовой 
оболочки использована модель MESA (Chen, 
Rogers, 2016). 

Была прослежена эволюция параметров ат-
мосферы HD 207496b как назад во времени (до 
возраста 10 млн лет), так и вперед (на 5 млрд лет). 
Текущий возраст планеты принимался равным 
520 млн лет, шаг по времени – 0.1 млн лет. 

В статье (Barros и  др., 2023) представлены 
результаты расчетов для обоих вариантов вну-
треннего строения планеты (скалистое ядро, 
окруженное газовой оболочкой, и  океанида). 
Для океаниды принималось, что к  настоящему 
моменту атмосфера практически утрачена – до-
бавлялась минимальная газовая оболочка, ко-
торая может быть потеряна за один шаг расчета 
во времени, вычислялась масса и протяженность 
Н/Не-атмосферы в прошлом. 

В случае скалистого ядра эволюция начи-
нается с  мини-нептуна радиусом около 3.1 R⊕. 
Массовая доля атмосферы в этот момент состав-
ляет около 2.2%. В  результате фотоиспарения 
атмосферы радиус, определенный по  транзиту, 
снижается к  современной эпохе до  наблюда-
емого значения 2.25 R⊕, а  величина fenv падает 
до 0.5%. Модель фотоиспарения предсказывает, 
что в  следующие 500  млн  лет атмосфера будет 
утрачена полностью, сохранится только скали-
стое ядро с радиусом 1.74 R⊕. Фактически, пла-
нета станет суперземлей, радиус которой будет 
соответствовать зазору Фултона. Модель океа-
ниды предсказывает существование в прошлом 
еще более мощной Н/Не-оболочки. 

Таким образом, результаты расчетов, выпол-
ненных в (Barros и др., 2023), указывают на по-
тенциально высокую эффективность механиз-
ма фотоиспарения атмосферы мини-нептуна 
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HD  207496b и  возможность его перехода в  ка-
тегорию суперземель, либо океанид. Также ре-
зультаты расчетов демонстрируют многообразие 
возможных эволюционных сценариев, обуслов-
ленное погрешностями в  определении параме-
тров экзопланеты. 

В работе (Barros и др., 2023) не учитывалась 
эллиптичность орбиты HD 207496b. Однако, как 
показано в работе (Simonova, Shematovich, 2023), 
существенный эксцентриситет может увеличить 
темпы потери атмосферы экзопланеты (как 
за счет возрастания потока XUV-излучения в пе-
риастре, так и  в связи с  уменьшением радиуса 
Роша при приближении к родительской звезде).

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПОТЕРИ 
АТМОСФЕРЫ ПОД ВОЗДЕЙСТВИЕМ 

ТЕПЛОВОГО ПОТОКА ИЗ НЕДР ПЛАНЕТЫ

В отличие от  фотоиспарения, процесс убе-
гания атмосферы планеты под воздействием те-
плового потока от  ядра практически не  зависит 
от  XUV-излучения родительской звезды. Темпы 
потери газовой оболочки в  данном случае опре-
деляются только болометрической светимостью 
звезды, а  также величиной теплового потока 
из  недр. В  данном случае планетный ветер фор-
мируется благодаря нагреву внешних слоев ат-
мосферы тепловым излучением планеты. Причем 
от болометрической светимости звезды напрямую 
зависит равновесная температура планеты Тeq, 
определяющая указанный поток теплового излу-
чения (см. ниже). Тепловой поток из недр влияет 
на распределение температуры и плотности в га-
зовой оболочке и, соответственно, высоту атмос-
феры. Планеты, обладающие горячими недрами, 
будут иметь более “раздутые” газовые оболочки 
и, соответственно, более высокую плотность газа 
на радиусе Бонди. Тепловой поток из недр, фак-
тически, обеспечивает подъем газа к радиусу Бон-
ди, откуда возможно его убегание от планеты. 

В настоящей работе для расчета убегания 
первичной газовой оболочки HD 207496b под 
воздействием теплового потока от  ядра ис-
пользовалась упрощенная аналитическая мо-
дель, представленная в  (Ginzburg и  др., 2018). 
Указанная модель также детально рассмотрена 
и  обоснована в  (Ginzburg и  др., 2016), где ком-
плексно исследуются процессы формирования 
первичных атмосфер мини-нептунов путем ак-
креции газа из  протопланетного диска на  ядра 
планет, потери внешних слоев газовых оболочек 
после рассеяния диска, а  также их дальнейшая 
эволюция с  учетом теплового потока от  ядер 

(рассматривается самосогласованная модель). 
В рамках работы (Ginzburg и др., 2016) выполне-
но сопоставление предсказаний предложенной 
модели с  данными наблюдений популяции су-
перземель (диаграммы масса–радиус и масса – 
равновесная температура). Показано согласие 
модели с наблюдательными данными. Получены 
простые аналитические зависимости для параме-
тров атмосферы и ядра планеты, а также темпов 
убегания газовой оболочки. Показано, в общем 
случае, что в зависимости от мощности газовой 
оболочки могут реализовываться различные 
сценарии ее эволюции: атмосфера может быть 
толстой, тонкой и ультратонкой. Границы меж-
ду этими состояниями определяются соотно-
шением между толщиной (высотой) атмосферы 
(ΔR), радиусом ядра (Rc) и радиусом Бонди (RB). 
Атмосфера является толстой, если выполняет-
ся условие: 1 ≤ ≤∆R R R Rc B c. Тонкая атмосфе-
ра соответствует неравенству R R R Rс В c≤ ≤∆ 1, 
а ультратонкая –�∆R R R Rc с В≤ .

Радиус Бонди вычисляется по формуле

	 �R
GM
k TВ

c

B eq
=

µ
,	 (1)

где G – гравитационная постоянная, μ – моле-
кулярная масса газа, kB – постоянная Больцма-
на, Тeq – температура газа (которая для внешних 
слоев атмосферы принимается равной равно-
весной температуре планеты).

Если атмосфера является толстой, то темпе-
ратура на границе газовой оболочки и ядра оста-
ется практически неизменной – ядро не отдает 
аккумулированную при формировании тепло-
вую энергию атмосфере (Ginzburg и  др., 2016). 
В  итоге атмосфера охлаждается и  сжимается, 
убегание не  играет существенной роли. Наи-
больший интерес представляет тонкая атмос-
фера. Во-первых, как показало моделирование 
(Ginzburg и др., 2016), после рассеивания прото-
планетного диска, падения внешнего давления 
и  отделения верхних слоев первичной газовой 
оболочки, мини-нептуны сохраняют атмосфе-
ру, начальная высота которой близка к радиусу 
ядра (вне зависимости от массы оболочки в до-
статочно широких пределах), т.е. ΔR0 ≈ Rc. Таким 
образом, первичные атмосферы мини-непту-
нов в начальной стадии своей эволюции близки 
к режиму тонкой атмосферы. Во-вторых, плане-
ты, радиусы которых попадают в зазор Фултона, 
по определению должны иметь тонкие атмосфе-
ры. “Выживание” тонких атмосфер, как показа-
ли оценки, выполненные в (Ginzburg и др., 2016), 
зависит от  их массы. Если газовые оболочки 
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достаточно массивные (с массой не  менее 5% 
от  массы планеты), то  временная шкала их ох-
лаждения и сжатия будет короче, чем характер-
ное время убегания. В итоге значительная часть 
атмосферы сохранится. В  противном случае 
тепловой поток от  ядра будет нагревать атмос-
феру, препятствуя ее сжатию, что может приве-
сти к полной потере газовой оболочки (причем 
темпы потерь возрастают в  процессе убегания 
атмосферы). Темпы убегания зависят от  кон-
кретных условий  – равновесной температу-
ры, массы планеты. Модель предсказывает, что 
в ряде случаев (см. ниже), часть оболочки может 
сохраниться. В  (Ginzburg и др., 2018) показано, 
что фундаментальное значение имеет соотно-
шение между теплоемкостью ядра и атмосферы. 
Если тепловая энергия, аккумулированная при 
формировании ядра, превосходит соответству-
ющую энергию газовой оболочки, то атмосфера 
будет утрачена, в противном случае – возможно 
охлаждение и сжатие атмосферы.

В основе модели, разработанной в (Ginzburg 
и др., 2018) и представленной ниже, лежат следу-
ющие основные допущения:

– рассматриваются не  слишком массивные 
газовые оболочки  – доля атмосферы в  массе 
планеты составляет не более десятков процентов 
(т.е. исследуются суперземли и  мини-нептуны, 
а не газовые гиганты); 

– принимается, что атмосфера состоит 
из  двух слоев  – внутреннего, конвективного 
(с адиабатическим температурным профилем) 
и внешнего, изотермичного, где тепловой поток 
переносится излучением; 

– считается, что вся масса атмосферы скон-
центрирована в  конвективном слое, а  радиа-
ционно-конвективная граница с  радиусом Rrcb, 
фактически, принимается за внешнюю границу 
атмосферы, грубо соответствующую наблюдае-
мому радиусу, определенному при транзите (та-
кое допущение принимается, поскольку высота 
однородной атмосферы значительно меньше ра-
диуса ядра); 

– поскольку наружный слой атмосферы 
считается изотермичным, то температура на ра-
диационно-конвективной границе принимает-
ся равной равновесной температуре планеты: 
Тrcb = Teq;

– начальная высота атмосферы: ΔR0 = Rrcb0 – 
– Rc ≈ Rc (здесь Rrcb0 – начальный радиус радиа-
ционно-конвективной границы);

– ядро планеты считается жидким (расплав-
ленным), полностью конвективным и  практи-
чески несжимаемым, что позволяет считать его 

изотермичным, с температурой Тс, соответству-
ющей также температуре на границе ядра и газо-
вой оболочки; 

– возможность формирования твердой коры 
на  поверхности ядра не  учитывается (оценка 
начальных значений температур подтвержда-
ет обоснованность этого допущения); соот-
ветственно, принимается, что тепловой поток 
из  недр лимитируется диффузионным перено-
сом энергии излучением в газе вблизи радиаци-
онно-конвективной границы; 

– принимается, что весь тепловой поток 
от ядра идет на нагрев и испарение атмосферы, 
не  учитывается коэффициент эффективности 
нагрева, значение которого порядка единицы;

– в  соотношениях, где используются моле-
кулярная масса газа и показатель адиабаты, при-
нимается, что атмосфера состоит только из во-
дорода, причем не учитывается его диссоциация 
(соответственно, показатель адиабаты γ = 7/5, 
как для двухатомного газа).

С учетом представленных допущений, 
в (Ginzburg и др., 2016) был получен ряд прибли-
женных аналитических соотношений.

Масса атмосферы в  любой момент времени 
может быть найдена по формуле

	 M R R
R R

R
B

env c rcb
c

= − ′








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∆

,	 (2)

где ρrcb  – плотность атмосферы на  радиацион-
но-конвективной границе, ′RB   – модифициро-
ванный радиус Бонди, ∆R – высота атмосферы 
(ΔR = Rrcb – Rc).

При этом модифицированный радиус Бонди 
следует из соотношения

	 � ′ = −
R RB B

γ
γ

1
.	 (3)

Температура на границе ядра и газовой обо-
лочки (а значит и  температура изотермичного 
ядра) находится из соотношения

	 k T
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R
RВ c

c

c

�
��
�

�1
2

� .	 (4)

Полная внутренняя энергия планеты (тепло-
вая и гравитационная), связанная как с газовой 
оболочкой, так и ядром, записывается как 
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где γ c,�µc – показатель адиабаты и молекулярная 

масса вещества ядра, � � � g
GM

R
= c

c
2

 – ускорение сво-

бодного падения на поверхности ядра планеты.
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Поток теплового излучения от  планеты, 
обеспечивающий ее охлаждение (“светимость”), 
можно получить из формулы

	 L E
T R
k

� � �
�



cool
rcb B

rcb

64
3

4� �
�

,	 (6)

где σ  – постоянная Стефана–Больцмана, k  – 
непрозрачность на  радиационно-конвективной 
границе. 

В достаточно широком интервале значений 
температур (500 К  < Trcb < 2000 К) непрозрач-
ность (с учетом молекулярных линий поглоще-
ния и  поглощения щелочными металлами) мо-
жет быть вычислена с  помощью соотношения 
(Freedman и др., 2008)

	 k
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Максимальный темп потери массы атмос-
феры может быть ограничен либо подводимой 
энергией, т.е. светимостью (энергетический ли-
мит), либо скоростью звука на  радиусе Бонди 
(предел Бонди) (Ginzburg и др., 2018).

Энергетический лимит скорости поте-
ри атмосферы (потока массы) рассчитывается 
по формуле

	 M
L

gRenv
E

c
= .	 (8)

Для предела Бонди имеется соотношение 

	 M R R Cenv
В

B B s= ( )4 2π ρ , � 	 (9)

где Cs – скорость звука, � RB� � – плотность газа 
на радиусе Бонди.

Скорость звука на радиусе Бонди можно по-
лучить из формулы

	 C
k T

s
В eq≅ 



µ

1
2

.	 (10)

Поскольку внешний, расположенный выше 
радиационно-конвективной границы слой ат-
мосферы считается изотермичным, то справед-
ливо следующее соотношение для расчета плот-
ности на радиусе Бонди:
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Если в  некоторый момент времени извест-
ны Mc и  fenv, то, очевидно, известна и масса га-
зовой оболочки Menv. Тогда, зная высоту атмос-
феры ΔR и воспользовавшись (2), можно найти 
плотность газа на  радиационно-конвективной 
границе  – �ρrcb. С  помощью формул (6) и  (7) 

отыскивается величина внутреннего теплового 
потока (светимости) L. По формулам (8)–(10) 
находятся максимальные значения потока мас-
сы, определяемые подводом энергии и пределом 
Бонди. Минимальная из этих величин принима-
ется в качестве текущего темпа потери атмосфе-
ры. Формула (5) позволяет найти запас энергии 
планеты в заданный момент времени. 

Далее может быть прослежена эволюция газо-
вой оболочки планеты. В каждый момент могут 
быть рассчитаны текущие оценки времени ох-
лаждения планеты и времени убегания ее атмос-
феры: tcool = Ecool/L и  tenv = Menv/min(  M Menv

E
env
В, ). 

Эти характерные шкалы времени позволяют вы-
брать шаг при численном моделировании про-
цесса испарения газовой оболочки. Значение 
шага по  времени Δt задается как малая доля 
(в (Ginzburg и др., 2018) – 1%, а в настоящей ра-
боте – 0.1%) от tscale = min(tcool, tenv). 

При заданном шаге Δt на  каждой итера-
ции, исходя из  значений на  предыдущем шаге, 
мы рассчитываем величину внутренней энергии 
планеты, а также текущую массу атмосферы: 

	 E E L tcool cool� � � ,	 (12)

	 M M M M tenv env env
E

env
Вmin� � � � , .� 	 (13)

С помощью соотношения (5) далее вычисля-
ется новое значение высоты атмосферы ΔR, а с 
использованием (2)  – новое значение плотно-
сти газа на радиационно-конвективной границе 
ρrcb. Затем, с  использованием формул (6)–(13), 
рассчитываются остальные параметры планеты, 
включая светимость L и темп потери атмосферы. 

Цикл повторяется до тех пор, пока не закон-
чится выбранное время моделирования, либо 
не  будет зафиксирована полная утрата газовой 
оболочки планеты. В  работе (Ginzburg и  др., 
2018) атмосфера считалась полностью утрачен-
ной, если fenv < 10–6, однако следует отметить, что 
безоблачные атмосферы мини-нептунов при 
давлении менее 10 бар должны быть оптически 
тонкими, (Mol Lous M и др., 2022). В этом слу-
чае использование соотношения (6) для расчета 
светимости L становится некорректным. Дан-
ный уровень давления у поверхности ядра может 
соответствовать величине fenv ≈ 10–5. Возможно, 
указанная величина в большей степени соответ-
ствует границе применимости модели.

Как было указано выше, большое значе-
ние имеет соотношение между энергиями га-
зовой оболочки и  ядра (первый и  второй чле-
ны в (5)). Вместо выполнения оценок γc, �µc для 
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соответствующих расчетов, как и в работе (Ginz-
burg и  др., 2018), здесь использована известная 
прямая оценка данного соотношения для газо-
вой оболочки первичного состава и  скалистого 
ядра: Eenv/Ec ≈ 17fenv. 

Следует отметить, что в  приведенных ниже 
результатах расчетов не учтена эволюция роди-
тельской звезды. Данное допущение приемлемо, 
поскольку звезда HD 207496 относится к  спек-
тральному классу К2.5V, и  ее болометрическая 
светимость изменяется не более, чем на несколь-
ко процентов за  миллиард лет. Таким образом, 
соответствующее изменение равновесной тем-
пературы экзопланеты HD 207496b не  должно 
превышать 1% (нескольких градусов кельвина), 
что находится в пределах погрешности ее оцен-
ки. На интервале времени порядка 10  млрд  лет 
соответствующая погрешность уже может до-
стичь 10%, что должно учитываться в  дальней-
ших исследованиях. 

АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТОВ

В настоящей работе были выполнены расче-
ты убегания атмосферы HD 207496b под воздей-
ствием теплового потока от ядра в соответствии 
с  представленной выше моделью из  (Ginzburg 
и др., 2018). 

Первый расчетный случай соответствует со-
временному начальному состоянию экзопла-
неты HD 207496b: ΔR = 0.51 R⊕, fenv = 0.005. Ис-
следовалась возможность потери современной 
атмосферы в будущем. Результаты представлены 

в виде графиков на рис. 1. На левой панели рис. 1 
дана зависимость от времени fenv, а на правой – 
высоты атмосферы в тысячах километров. За ну-
левой момент времени принята текущая эпоха. 
В  рамках данной работы приводятся графики 
именно для высоты атмосферы, поскольку этот 
тип зависимости лучше иллюстрирует эволюци-
онные изменения газовой оболочки. 

 На левой панели рис.  1 видно, что массо-
вая доля атмосферы практически не  изменяет-
ся даже на шкале времени порядка 10 млрд лет. 
Другими словами, испарение атмосферы, обу-
словленное тепловым потоком от ядра, для HD 
207496b в  современную эпоху пренебрежимо 
мало, атмосферные потери определяются фото-
испарением. Тем не менее, как видно из графика 
на правой панели, охлаждение и сжатие атмос-
феры само по себе может привести к уменьше-
нию ее высоты почти в 3 раза на рассмотренном 
промежутке времени. Тогда, даже без учета фо-
тоиспарения и  потери массы, внешний радиус 
планеты, определенный по  транзиту, с  2.25  R⊕ 
уменьшится до 1.9 R⊕.

Во втором расчетном случае рассматрива-
лась эволюция атмосферы HD 207496b, начиная 
с момента формирования экзопланеты. Прини-
малось (в соответствии с  (Ginzburg и  др., 2016; 
2018)), что начальная высота атмосферы равна 
радиусу ее ядра, т.е. ΔR0 = 1.74 R⊕. В  этом слу-
чае начальный радиус планеты, определенный 
по  транзиту, оказывается 3.48 R⊕, что в  целом 
не  противоречит результатам моделирования, 
представленным в (Barros и др., 2023). Начальное 
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Рис. 1. Эволюция массовой доли атмосферы fenv и ее высоты ΔR для HD 207496b при рассмотрении в качестве на-
чального современного состояния экзопланеты и  ее газовой оболочки. Убегание атмосферы в  связи с  потоком 
тепловой энергии от ядра практически отсутствует, снижение высоты со временем определяется ее охлаждением 
и сжатием.
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значение массовой доли атмосферы прини-
малось равным fenv = 0.022, т.е. соответствую-
щим предсказаниям гипотезы фотоиспарения. 
Результаты расчетов представлены на  рис.  2. 
Видно, что влияние теплового потока от  ядра 
на  процесс убегания атмосферы и  для данного 
расчетного случая оказывается пренебрежимо 
малым. Данный механизм не  способен замет-
но изменить массовую долю газовой оболочки, 
в  отличие от  фотоиспарения. Тем не  менее и  в 
этом случае имеют место охлаждение и  замет-
ное сжатие атмосферы. Модель предсказывает, 
что высота атмосферы (при неизменной массе) 
должна была бы составить в современную эпоху 
(через 520  млн  лет после формирования экзо-
планеты) около 0.57 R⊕, а  радиус экзопланеты, 
определенный по транзиту, – около 2.31 R⊕, что 
незначительно превышает наблюдаемое значе-
ние. Таким образом, изменение высоты атмос-
феры в  силу постепенного охлаждения необхо-
димо учитывать наряду с процессами испарения. 

Как отмечается в (Ginzburg и др., 2016), сжатие 
может продолжаться до  некоторой максималь-
ной плотности газа ρmax ~ μ/а0

3, где а0  – радиус 
Бора. Причем показано, что массивные газовые 
оболочки к  моменту достижения рассматривае-
мого тонкого режима имеют плотность порядка 
1/7 ρmax. Соответственно, высота атмосферы в ре-
зультате сжатия, обусловленного охлаждением, 
может измениться примерно в 7 раз. Масштабы 
изменения высоты атмосферы на рис. 2 находят-
ся в пределах данного ограничения.

Степень сжатия атмосферы ограничивает-
ся также предельно достижимым охлаждением, 

обусловленным равновесной температурой, т.е. 
потоком энергии от родительской звезды. 

Для второго расчетного случая в начальный 
момент времени внутренний тепловой поток со-
ставляет порядка 1.24 × 1018 Вт. Этот поток мог 
бы обеспечить скорость убегания атмосферы 
около 5.7 × 109 кг/с. Однако предел Бонди со-
ставляет только 1.4 × 106 кг/с, что связано с до-
статочно низкой плотностью газа на  радиусе 
Бонди. Низкая плотность газа, в  свою очередь, 
обусловлена относительно большой величиной 
RВ в  силу сравнительно низкой Тeq. Соответ-
ственно, характерное время охлаждения экзо-
планеты на три порядка меньше, чем время ис-
парения ее атмосферы. 

В работе (Ginzburg и др., 2016) приведен ана-
литический критерий, позволяющий оценить 
возможность “выживания” тонких атмосфер 
мини-нептунов, если их массовая доля – менее 
5% от массы планеты. 

При выполнении условия Mc > 6.3(Teq/ 
1000 К)4/3М⊕ характерная шкала времени убега-
ния атмосферы превысит возраст планеты, т.е. 
если планета будет достаточно холодной и массив-
ной, газовая оболочка может частично сохранить-
ся. В частности, для HD 207496b при равновесной 
температуре 743 К  критическое значение массы 
ядра составляет около 4.24 М⊕. Соответственно, 
представленный выше результат ожидаем. Однако 
видно, что данная экзопланета находится доста-
точно близко к границе, когда потери атмосферы 
под воздействием теплового потока от ядра могли 
бы стать значимыми, что подтверждается резуль-
татами, представленными ниже. 
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Рис. 2. Эволюция массовой доли атмосферы fenv и ее высоты ΔR для HD 207496b с момента формирования планеты. 
Убегание атмосферы практически отсутствует, изменение ΔR с момента формирования планеты определяется ох-
лаждением и сжатием.
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Характеристики экзопланеты HD 207496b 
(особенно масса) оценены со значительной по-
грешностью, поэтому целесообразно исследо-
вать устойчивость полученного выше результата 
к изменению некоторых параметров модели. 

Нами было изучено влияние на  темпы по-
тери атмосферы в  результате рассматриваемо-
го механизма экзопланетой типа HD 207496b 
равновесной температуры Тeq и  массы ядра Mc. 
Рассматривался второй расчетный случай – эво-
люция экзопланеты с  момента формирования, 
когда высота газовой оболочки принимается 
равной радиусу ядра. Во всех случаях считалось, 
что начальная величина fenv = 0.022. 

На рис. 3 представлены результаты расчетов 
для различных значений равновесной темпера-
туры: Тeq = 743 К; 900 К; 1000 К; 1100 К; 1300 К. 
Все остальные параметры фиксированы и не от-
личаются от приведенных ранее для второго рас-
четного случая. 

Отметим, что заметные отклонения от  при-
веденной выше оценки Teq могут возникать 
в силу отличия реального значения альбедо Бон-
да экзопланеты от  принятой в  расчетах вели-
чины. Также изменение равновесной темпера-
туры может произойти в будущем, в силу роста 
светимости HD 207496 на этапе схода с главной 
последовательности. На оценку Teq также может 
оказывать влияние и  эксцентричность орбиты 
экзопланеты при заданном значении большой 
полуоси.

Как видно из рис. 3, темпы потери атмосфе-
ры весьма сильно зависят от  равновесной тем-
пературы. Если рост Тeq до 900 К приводит лишь 
к  незначительной потере газовой оболочки (не 
более 7% от начального значения массы), после 

чего она охлаждается и сжимается практически 
так же, как и  при температуре 743 К  (см. пра-
вую панель на рис. 3), то дальнейшее ее увели-
чение приводит к  быстрой потере атмосферы. 
Это связано с  уменьшением радиуса Бонди, 
а  также пропорциональным четвертой степени 
температуры ростом теплового потока из  недр 
планеты (см. формулу (6)). Особенностью убега-
ния атмосферы под действием теплового потока 
от  ядра является ускоряющийся характер про-
цесса (Ginzburg и др., 2016). Уменьшение массы 
атмосферы приводит к  снижению плотности 
на радиационно-конвективной границе ρrcb, па-
дает непрозрачность среды и, соответственно, 
растет тепловой поток из  недр (светимость)  – 
см. формулы (6) и (7). В итоге светимость быстро 
растет, а  значит растет и  темп потери газовой 
оболочки. Как следствие, большая часть атмос-
феры утрачивается за  сравнительно короткий 
промежуток времени. В  частности, из  графика 
на левой панели рис. 3 (кривые 3–5) видно, что 
основные потери атмосферы для планеты типа 
HD 207496b по  указанному механизму должны 
были иметь место в первые 3–4 млн лет. В пол-
ном соответствии с  предложенной в  (Ginzburg 
и  др., 2016) моделью, на  этапе интенсивного 
испарения атмосферы радиус планеты остает-
ся практически неизменным (тепловой поток 
от  ядра не  позволяет ей сжаться и  охладиться, 
несмотря на потерю массы). В то же время (см. 
кривые 1 и 2 на графике правой панели рис. 3), 
если светимость недостаточна для обеспечения 
высоких темпов испарения, атмосфера успевает 
охладиться и сжаться. 

Как видно из рис. 3, после стадии быстрой по-
тери атмосферы может наступить стабилизация 
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Рис. 3. Эволюция массовой доли атмосферы  fenv и ее высоты ΔR для экзопланеты типа HD 207496b с момента форми-
рования для разных значений равновесной температуры: 1 – Тeq= 743 К; 2 – 900 К; 3 – 1000 К; 4 – 1100 К; 5 – 1300 К.
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процесса: сохранится некоторая остаточная га-
зовая оболочка, которая перейдет к фазе охлаж-
дения и  сжатия и  сможет существовать милли-
арды лет. Это связано с  тем, что темпы потерь 
атмосферы достигают предела Бонди (скорость 
течения газа на радиусе Бонди RВ достигает ско-
рости звука), после чего уже не могут возрастать. 
Более того, в  процессе дальнейшей потери ат-
мосферы падает плотность на  радиусе Бонди и, 
соответственно, снижаются темпы испарения. 
Появляется возможность для охлаждения и сжа-
тия атмосферы, темпы потерь снижаются за счет 
прогрессирующего снижения ρВ, обусловленного 
как снижением массы газовой оболочки в целом, 
так и смещением ближе к ядру радиационно-кон-
вективной границы из-за сжатия атмосферы. 
Указанный эффект отмечен в  (Ginzburg и  др., 
2016; 2018) и подтверждается расчетами в насто-
ящей работе. Заметим, что, поскольку в  рамках 
рассматриваемой модели учитывается только 
гравитация ядра (в силу малой массовой доли 
газовой оболочки), то  величина радиуса Бонди 
остается неизменной в процессе потери атмосфе-
ры. Мощность остаточной оболочки будет зави-
сеть от конкретных начальных условий процесса, 
включая Teq. Из рис. 3 (левая панель) видно, что 
для аналога экзопланеты HD 207496b массовая 
доля остаточной атмосферы снижается с  0.02 
практически до нуля при росте равновесной тем-
пературы от 900 К до 1300 К. При более высоких 
температурах оболочка утрачивается полностью 
на стадии быстрой потери атмосферы. На боль-
ших интервалах времени (см. наклон кривых 3 
и 4 на левой панели рис. 3) остаточные оболоч-
ки также могут быть постепенно утрачены, хотя 

характерное время их сравнительно стабильного 
существования может составить миллиарды лет. 
Эта особенность поведения остаточных оболочек 
подтверждает выводы работ (Ginzburg и др., 2016; 
2018) – атмосферы с массовой долей менее ≈5% 
оказываются нестабильными, но время их суще-
ствования будет определяться равновесной тем-
пературой и массой планеты. 

Результаты расчетов эволюции массовой 
доли и  высоты атмосферы для различных масс 
ядра экзопланеты типа HD 207496b приведены 
на  рис.  4. В  этом случае варьировалась только 
масса ядра экзопланеты, рассматривались зна-
чения Мс = 6.07 М⊕; 5.0 М⊕; 4.5 М⊕; 4.0 М⊕. Для 
каждого значения массы ядра рассчитывался ра-
диус. Аналогично подходу в (Barros S.C.C. и др., 
2023) (для корректности сопоставления резуль-
татов расчетов) использовалась зависимость 
между радиусом и  массой ядра из  (Otegi и  др., 
2020): Rc ≈ 1.03 × Mc

0.29 (для ядер со средней плот-
ностью выше 3.3 г/см3). Поскольку зависимость 
носит полуэмпирический характер, то  в  (Otegi 
и  др., 2020) для показателя степени и  коэффи-
циента при Мс даны предельные отклонения, но, 
как и в (Barros и др., 2023), здесь использованы 
математические ожидания. Полученные значе-
ния радиусов Rc для приведенных выше масс со-
ставляют: 1.74 R⊕; 1.64 R⊕; 1.59 R⊕; 1.54 R⊕. Для 
всех значений массы ядра доля газовой оболоч-
ки в  массе планеты fenv = 0.022. Другие параме-
тры фиксировались, в частности, Teq = 743 К. 

Как видно из рис. 4 (левая панель), снижение 
массы ядра планеты в данном случае также может 
привести к появлению убегания атмосферы под 
воздействием внутреннего теплового потока, что 
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Рис. 4. Эволюция массовой доли атмосферы fenv и ее высоты ΔR для экзопланеты типа HD 207496b с момента фор-
мирования для разных значений массы ядра: 1 – Мс = 6.07 М⊕; 2 – 5.0 М⊕; 3 – 4.5 М⊕; 4 – 4.0 М⊕. 
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связано с  уменьшением ускорения свободного 
падения на поверхности ядра и, соответственно, 
радиуса Бонди. Этот эффект тем не менее слабо 
выражен при массах ядра свыше 4.5 М⊕. Посколь-
ку с  учетом погрешностей измерений нижний 
предел массы HD207496b оценивается в  4.6 М⊕, 
то  очевидно, что для рассматриваемой модели 
этой экзопланеты тепловое испарение газовой 
оболочки под воздействием ядра не могло играть 
существенной роли. Однако видно, что дальней-
шее снижение массы (уменьшение гравитации 
ядра) должно привести к  быстрому нарастанию 
потерь с появлением эволюционной стадии, ког-
да тепловой поток от ядра играет важную роль. 

Если в составе ядра планеты присутствует су-
щественное количество воды, то его радиус будет 
заметно выше, чем для скалистого, а ускорение 
свободного падения  – ниже. Соответственно, 
эффект проявится при больших значениях мас-
сы. Поскольку присутствие водной мантии у HD 
207496b весьма вероятно, то  вполне возможно, 
что экзопланета проходила соответствующую 
стадию эволюции. Указанный вопрос требует 
дальнейшего исследования.

Отметим, что включение в состав ядра боль-
шого количества воды приводит к росту величи-
ны аккумулированной тепловой энергии. Это 
также может способствовать развитию испаре-
ния газовой оболочки под воздействием ядра, 
как и  восполнение запаса теряемой в  процессе 
охлаждения тепловой энергии в  силу выделе-
ния радиогенного и  приливного тепла, а  также 
в силу сжатия самого ядра. Перечисленные эф-
фекты в данной работе не учитываются и будут 
рассмотрены в дальнейших исследованиях. Эл-
липтичность орбиты экзопланеты также может 
сказаться на  темпах испарения как в  силу ко-
лебаний Тeq при орбитальном движении, так и в 
связи с изменением радиуса полости Роша. От-
личие эксцентриситета орбиты от нулевого зна-
чения также приводит к упомянутой генерации 
приливного тепла в ядре.

Заметим, что на  рис.  4 эволюция атмосфе-
ры для разных значений массы ядра начинается 
с  разных значений высоты ΔR, поскольку на-
чальная высота равна радиусу ядра, зависящему 
от массы. Тем не менее для интервала значений 
масс ядра от 4.5 М⊕ до 6.07 М⊕ эволюция атмос-
феры спустя 5 млн лет идет практически по од-
ному сценарию. Высота атмосферы в настоящую 
эпоху (520  млн  лет) практически не  отличается 
для кривых 1–3. Поскольку радиус ядра также 
находится для них в интервале от 1.59 до 1.74 R⊕, 
то  все эти случаи дают радиус, определенный 

по  транзиту, около 2.1–2.25 R⊕, что совмести-
мо с  результатами наблюдений. Для четвертой 
кривой высота атмосферы в  настоящую эпоху 
оказывается почти в  1.5 раза меньше, а  радиус 
ядра – 1.54 R⊕. Радиус, определенный по тран-
зиту, – около 1.92 R⊕, что уже заметно отличает-
ся от результатов наблюдений. 

ВЫВОДЫ

1. Выполнено моделирование процесса убе-
гания атмосферы мини-нептуна HD 207496b под 
воздействием теплового потока от ядра. Рассма-
тривался вариант внутреннего строения экзо-
планеты, когда скалистое (железо-силикатное) 
ядро окружено водородно-гелиевой атмосфе-
рой. Изучена как возможность потери совре-
менной атмосферы, составляющей для данной 
модели внутреннего строения 0.5% по массе, так 
и начальной, с массой около 2.2%. 

2. Показана низкая эффективность рассма-
триваемого механизма убегания атмосферы 
для заданной равновесной температуры экзо-
планеты (743 К) и массы скалистого ядра около 
6.07 М⊕. Сделан вывод о  преобладающей роли 
фотоиспарения в  потере газовой оболочки HD 
207496b для принятых параметров модели. 

3. Продемонстрировано, что полученный ре-
зультат существенным образом зависит от при-
нятых значений массы и равновесной темпера-
туры HD 207496b. 

Учитывая погрешности в определении харак-
теристик планеты (особенно массы), а также то, 
что в модели не рассматриваются дополнитель-
ные источники тепловой энергии (радиогенной, 
приливной) нельзя исключить, что в  эволюци-
онной истории HD 207496b могла быть стадия 
потери газовой оболочки под воздействием те-
плового потока от ядра. 

Целесообразен также анализ возможности 
более высоких значений равновесной темпера-
туры HD 207496b в прошлом в силу, например, 
более низкого значения альбедо Бонда. 

4. Принципиальное значение имеет присут-
ствие воды в составе ядра HD 207496b. При на-
личии водного слоя, составляющего значитель-
ную часть массы ядра, темпы потери атмосферы 
могут быть существенно выше, и  это требует 
дальнейших исследований. 

Исследование выполнено в  рамках проекта 
“Исследование звезд с  экзопланетам” по  гранту 
Правительства РФ для проведения научных ис-
следований, проводимых под руководством веду-
щих ученых (соглашение № 075-15-2022-1109).
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