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ВВЕДЕНИЕ

В работах ряда авторов (Rosengren и  др., 
2015; Daquin и др., 2016; Томилова и др., 2018; 
2019) показано, что совместное действие ве-
ковых и  орбитальных резонансов способно 
оказывать заметное влияние на динамику око-
лоземных объектов. Это влияние может приво-
дить к  изменению орбит объектов или к  воз-
никновению хаотичности их движения, делая 
невозможным долгосрочное прогнозирование 
орбит. Можно сказать, что резонансы форми-
руют структуру околоземного космического 
пространства (ОКП), знание которой необхо-
димо при подборе орбит новых космических 
аппаратов или для захоронения уже отработав-
ших объектов. 

Области орбитальных резонансов 1:3, 1:4, 
1:6 и  1:8 со  скоростью вращения Земли были 

подробно рассмотрены в  работах (Томилова 
и др., 2019; 2021).

В работе (Блинкова, Бордовицына, 2022) 
были исследованы области орбитальных ре-
зонансов 1:5, 1:7, 1:9, 1:10 и  1:11 со  скоростью 
вращения Земли. Было показано, что в  зонах 
орбитальных резонансов 1:5, 1:7 и  1:9 хаотиза-
ция движения наблюдается по  линии действия 
второй компоненты орбитального резонанса, а в 
зонах орбитальных резонансов 1:10 и 1:11 хаоти-
зация движения не зависит от действия их ком-
понент. Чтобы выявить причину этого явления, 
необходимо определить структуру вековых резо-
нансов в этих областях, чему посвящена настоя-
щая работа. 

Цели данной работы можно сформулировать 
следующим образом: 

– определение структуры вековых резонан-
сов в областях действия орбитальных резонансов 
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1:5, 1:7, 1:9, 1:10 и  1:11 со  скоростью вращения 
Земли; 

 – исследование орбитальной эволюции объ-
ектов, населяющих рассматриваемые области 
околоземного пространства;

– выявление закономерностей, которые мо-
гут влиять на  размещение новых спутниковых 
систем и поиск орбит утилизации или паркинга 
для отработавших космических аппаратов.

Реализация поставленных целей, привела 
к решению перечисленных ниже задач:

– проведен численный эксперимент по  мо-
делированию динамики объектов, движущихся 
в  области орбитальных резонансов 1:5, 1:7, 1:9, 
1:10 и 1:11 со скоростью вращения Земли;

– построены карты распределения вековых 
апсидально-нодальных резонансов и  полувеко-
вых резонансов, связанных со  средним движе-
нием третьего тела;

– исследованы особенности динамической 
эволюции орбит некоторых объектов, населяю-
щих рассматриваемые области, в том числе с ис-
пользованием быстрой ляпуновской характери-
стики MEGNO (Cincotta и др., 2003);

– на  примере анализа орбитальной эволю-
ции объектов каталога NORAD, движущихся 
в рассматриваемой области, рассмотрен вопрос 
о возможности размещения новых спутниковых 
систем и  утилизации отработавших объектов 
в данной области.

МЕТОДИКА ИССЛЕДОВАНИЯ

Численное моделирование движения всех 
объектов осуществляется на  кластере “СКИФ 
Cyberia” НИ ТГУ с использованием программ-
ного комплекса “Численная модель движения 
систем ИСЗ” (Александрова и др., 2021б), в ко-
тором применяется новый коллокационный 
интегратор Lobbie (Авдюшев, 2020). В  процес-
се моделирования учитываются возмущения 
от  гармоник геопотенциала до  10-го порядка 
и степени, а также возмущения от Луны и Солн-
ца. Совместно с  уравнениями движения инте-
грируются уравнения для вычисления текущего 
и усредненного параметров MEGNO. Эволюция 
во  времени усредненного параметра MEGNO 
показывает степень хаотизации движения объ-
екта. Так, например, известно, что для квази-
периодических (регулярных) орбит параметр 
MEGNO осциллирует около 2, а для устойчивых 
орбит типа гармонического осциллятора усред-
ненное значение MEGNO равно нулю. Если 
значение усредненного параметра MEGNO 

больше 2 и растет линейно, то имеет место хао-
тизация движения, что не позволяет точно про-
гнозировать эволюцию элементов орбиты.

Исследование структуры вековых резонан-
сов осуществляется по следующей схеме.

1. Изучается эволюция во времени резонанс-
ных (критических) аргументов, полученных 
из аргументов возмущающей функции для одно-
кратно и двукратно осредненной ограниченной 
задачи трех тел

	 ψ ω ω= − ′ + ′ ′ + − − − ′ ′ + − ′( ) ( ) ( ) ( )l p q l p l p m2 2 2M Ω Ω	 (1)
	ψ ω ω= − ′ + ′ ′ + − − − ′ ′ + − ′( ) ( ) ( ) ( )l p q l p l p m2 2 2M Ω Ω ,	

	 ψ ω ω= − − − ′ ′ + − ′( ) ( ) ( ).l p l p m2 2 Ω Ω 	 (2)

2. Оценивается степень близости к нулю, по-
лученных по  формулам (1) и  (2), резонансных 
соотношений

	  ψ ψ≈ ≈0 0, .    	

Здесь обозначения элементов орбит обще-
принятые, l, p, p , m, q′ ′ – целочисленные индек-
сы, а  формулы для вычисления рассматривае-
мых частот системы имеют вид
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где Ω, ,  ω M  – долгота восходящего узла, аргумент 
перигея, средняя аномалия орбиты спутника, а 




Ω, ,  ω M  – соответствующие им частоты. Причем 
все элементы и  частоты, обозначенные штри-
хом, относятся к  третьему телу, а  без штриха  – 
к спутнику.

Вековые частоты  Ω, ω в  движении спутника 
определяются в  процессе численного интегри-
рования уравнений движения (Александрова 
и  др., 2020) с  использованием формул Ньюто-
на–Эйлера

	 d
d

d
d

Ω
t

r
p

u
i

W
t e

S
e

r
p

T
r
p

u
i

W= = − + +





−sin
sin

;
cos sin sin

tg
,

ω υ υ
1	

	d
d

d
d

Ω
t

r
p

u
i

W
t e

S
e

r
p

T
r
p

u
i

W= = − + +





−sin
sin

;
cos sin sin

tg
,

ω υ υ
1 	 (3)

где S, T, W  – возмущающие ускорения, запи-
санные в орбитальной системе координат и свя-
занные с правыми частями уравнений движения 
известными соотношениями (Бордовицына, Ав-
дюшев, 2016). Вековые частоты возмущающих 
тел также получаются численно из фонда коор-
динат больших планет DE421 с использованием 
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производной от  интерполяционного полинома 
Лагранжа 12-го порядка:
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При малых значениях наклонения и эксцен-
триситета формулы (3) могут давать искаженные 
результаты. В этих случаях частоты определяют-
ся с помощью аналитических формул: 
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Здесь r0  – экваториальный радиус Земли, 
a e i n, , ,  – большая полуось, эксцентриситет на-
клонение орбиты и  среднее движение спутни-
ка, ′ ′ ′a e i, ,   – большая полуось, эксцентриситет 
и  наклонение орбиты третьего тела, ′ ⊕

m mL,S   – 
отношение масс третьего тела ′mL,S и  Земли 
m⊕ ′ ′, l, p, p , m, q – целочисленные индексы.

Аналитические формулы имеют особенно-
сти при эксцентриситетах, близких к 1, поэтому 
формулы (3) и  (4) являются взаимозаменяемы-
ми. Выбор формулы зависит от  величины экс-
центриситета. 

Варьирование коэффициентов в  формулах 
(1) и (2) позволяет получить все виды резонанс-
ных соотношений, возникающих в  динамике 
спутника. Рассматриваемые нами в этой работе 
вековые апсидально-нодальные резонансы, свя-
занные с движениями линий апсид и узлов спут-
ника и  третьего тела даны в  табл. 1, а  вековые 
резонансы, связанные со  средним движением 
третьего тела приведены в табл. 2.

Геометрический резонанс типа Лидова–Ко-
заи (Лидов, 1961; Kozai, 1962) ω ≈ 0 является 
частным случаем апсидально-нодальных резо-
нансов и  представляет собой вековой резонанс 
первого порядка.

Наличие или отсутствие векового резонанса 
оценивается (Мюррей, Дермотт, 2010) по пове-
дению критических аргументов (1) и (2):

– если происходят либрационные изменения 
во времени, то резонанс является устойчивым;

– если либрация сменяется циркуляцией, 
или наоборот, то имеет место неустойчивый ре-
зонанс;

– если критический аргумент циркулирует, 
то резонанс отсутствует.

Кроме того, при исследовании динамики 
объектов, населяющих рассматриваемые обла-
сти, нами учитывались результаты анализа ор-
битальных резонансов 1:5, 1:7, 1:9, 1:10 и  1:11 
со  скоростью вращения Земли, подробно ис-
следованные в работе (Блинкова, Бордовицына, 
2022).

В частности, при исследовании динами-
ки конкретных объектов выявление орби-
тальных резонансов проводилось путем изу-
чения поведения резонансных соотношений 

Таблица 1. Типы вековых апсидально-нодальных резонансов первого–четвертого порядков

№ Тип резонансного
соотношения № Тип резонансного

соотношения № Тип резонансного
соотношения

1  

 Ω Ω− ′( ) + − ′S,L S,Lω ω 8  

 Ω Ω− ′( ) − − ′S,L S,L2 2ω ω 15  

Ω Ω− ′( ) + ′S,L S,L2ω

2  

 Ω Ω− ′( ) − + ′S,L S,Lω ω 9  

Ω Ω− ′( ) +S,L ω 16  

Ω Ω− ′( ) − ′S,L S,L2ω

3  

 Ω Ω− ′( ) + + ′S,L S,Lω ω 10  

Ω Ω− ′( ) −S,L ω 17  Ω Ω− ′( )S,L

4  

 Ω Ω− ′( ) − − ′S,L S,Lω ω 11  

Ω Ω− ′( ) +S,L 2ω 18  ω ω− ′S,L

5  

 Ω Ω− ′( ) + − ′S,L S,L2 2ω ω 12  

Ω Ω− ′( ) −S,L 2ω 19  ω ω+ ′S,L

6  

 Ω Ω− ′( ) − + ′S,L S,L2 2ω ω 13  

Ω Ω− ′( ) + ′S,L S,Lω 20 ω

7  

 Ω Ω− ′( ) + + ′S,L S,L2 2ω ω 14  

Ω Ω− ′( ) − ′S,L S,Lω
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и соответствующих им критических аргументов. 
Резонансные соотношения для орбитального 
резонанса записывались следующим образом: 
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и соответствующие им критические аргументы
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где θ – гринвичское звездное время, u и v – це-
лые числа.

Эта методика, была предложена Allan (1967a; 
1967b), уточнена Кузнецовым (Кузнецов и  др., 
2012) для резонанса 1:2 и  обобщена в  работах 
(Томилова и др., 2018; 2019; 2021).

Оценивание наличия или отсутствия резо-
нанса проводилось по той же методике, что и для 
вековых резонансов. 

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Проведен эксперимент по  выявлению ве-
ковых резонансов, находящихся в областях ор-
битальных резонансов 1:5, 1:7, 1:9, 1:10 и  1:11 

со  скоростью вращения Земли. Модельные 
объекты распределены равномерно по исследу-
емым областям с  шагом 200  м по  большой по-
луоси и 5° по наклонению. Орбиты модельных 
объектов близки к  круговым, эксцентриситет 
равен 0.001. Диапазон по наклонению был вы-
бран от  0° до  180°, а  диапазон по  большой по-
луоси соответствует области орбитального 
резонанса и  представлен в  табл. 3. Значения 
остальных угловых элементов орбиты были за-
даны равными 0°.

При построении областей распространенно-
сти резонансов учитывались не  только острые 
резонансы, для которых значения  ψ ψ≈ ≈0 0, 
проходят через нулевые значения, но также ре-
зонансы со смещенным центром колебаний, так 
называемые α-резонансы. Причем число α было 
получено из  предварительного анализа ампли-
туд околорезонансных колебаний величин  ψ ψ,  
отдельно для резонансов, связанных с  Луной 
и Солнцем. В результате в рассмотрение прини-
мались резонансы, удовлетворяющие условиям:

	   рад/с рад/с рад/с  ψ ψ ψS L S L≤ ≤ ≤× × ×− − −5 7 5 410 10 106 6 6, ,. ,	
	  рад/с рад/с рад/с  ψ ψ ψS L S L≤ ≤ ≤× × ×− − −5 7 5 410 10 106 6 6, ,. , .	 (5)

Оценка берется по модулю для резонансного 
аргумента, поскольку смешение центра может 

Таблица 2. Типы вековых резонансов со скоростью движения третьего тела второго–пятого порядков

№ Тип резонансного
соотношения № Тип резонансного

соотношения № Тип резонансного
соотношения

1 ′ −

MS,L ω 7 ′ + − − ′



 MS,L S,Lω ( )Ω Ω 13 ′ − − − ′



 MS,L S,L2ω ( )Ω Ω

2 ′ +

MS,L ω 8 ′ − + − ′



 MS,L S,Lω ( )Ω Ω 14 ′ + + − ′



 MS,L S,L2ω ( )Ω Ω

3 ′ −

MS,L 2ω 9 ′ − − − ′



 MS,L S,Lω ( )Ω Ω 15 ′ − + − ′



 MS,L S,L2ω ( )Ω Ω

4 ′ +

MS,L 2ω 10 ′ + + − ′



 MS,L S,Lω ( )Ω Ω 16 ′ + − − ′



 MS,L S,L2ω ( )Ω Ω

5 ′ − − ′  MS,L S,L( )Ω Ω 11 ′ − − ′  MS,L S,L2( )Ω Ω

6 ′ + − ′  MS,L S,L( )Ω Ω 12 ′ + − ′  MS,L S,L2( )Ω Ω

Таблица 3. Диапазоны рассмотренных областей по большой полуоси

Тип орбитального 
резонанса

Диапазон по большой 
полуоси, км

Тип орбитального 
резонанса

Диапазон по большой 
полуоси, км

1:5 14400–14480 1:10 9040–9150

1:7 11500–11570 1:11 8475–8600

1:9 9700–9800
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происходить как в положительную, так и в отри-
цательную сторону.

Структура вековых апсидально-нодальных 
резонансов, связанных с  прецессией орбиты 
Луны, в  области орбитального резонанса 1:5, 
представлена на рис. 1.

Из-за большого количества действующих 
резонансов, на рис. 1 представлено два графика 
распределения резонансов: устойчивых (рис. 1а) 
и неустойчивых (рис. 1б). Данные на рисунке по-
казывают, что структура резонансов в этой обла-
сти сложна и отличается большим количеством 
наложений, как устойчивых, так и неустойчивых 
резонансов. Кроме того, существуют области 
от 5° до 35° и от 145° до 175°, где резонансы вовсе 
отсутствуют.

Для большей наглядности, количество нало-
жений апсидально-нодальных резонансов, свя-
занных с прецессией орбиты Луны, представле-
но на рис. 2, из которого видно, что наибольшая 
концентрация резонансов имеет место для на-
клонений 70° и 110°.

На рис. 3 представлена карта распределения 
вековых апсидально-нодальных резонансов, 
связанных с  прецессией орбиты Солнца. Здесь 
также, как и в случае с распределением лунных 
апсидально-нодальных резонансов, имеется 
область их наибольшей концентрации. Она на-
ходится в диапазоне наклонений от 45° до 135°. 
В рассмотренной области действует и резонанс 
Лидова–Козаи. При наклонениях 65° и  115° 
он проявляет устойчивое действие, а при накло-
нениях 60° и 120° – неустойчивое.

Вековых резонансов, связанных со  средним 
движением Луны в области орбитального резо-
нанса 1:5, не обнаружено, а резонансы со сред-
ним движением Солнца представлены на рис. 4. 
Наибольшая концентрация вековых резонан-
сов со  средним движением Солнца расположе-
на в области наклонений от 20° до 55° и от 125° 
до 160°. Здесь можно отметить зеркальную струк-
туру относительно наклонения 90°. Например, 
при значении наклонения 30° во всем простран-
стве по  большой полуоси действует устойчи-
вый резонанс   ψ12 2, ( )S S,L= ′ + − ′n Ω Ω , а  при об-
ратном движении (i = 150°) действует резонанс 


 ψ11 2, ( )S n= ′ − − ′S,L Ω Ω . Так, у каждого резонанса, 
действующего на  прямом движении, есть ана-
лог резонанса, который действует при обратном 
движении.

На рис. 5 представлено распределение ве-
ковых апсидально-нодальных резонансов, 
связанных с прецессией орбиты Луны, для об-
ласти орбитального резонанса 1:7. Как и  для 

Рис. 1. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с  прецессией орбиты 
Луны в области орбитального резонанса 1:5 со ско-
ростью вращения Земли: (а) – все устойчивые резо-
нансы; (б) – все неустойчивые резонансы.
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Рис. 2. Количество наложений апсидально-нодаль-
ных резонансов, связанных с  прецессией орбиты 
Луны, в области орбитального резонанса 1:5.
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Рис. 3. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с  прецессией орби-
ты Солнца в  области орбитального резонанса 1:5 
со скоростью вращения Земли.
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орбитального резонанса 1:5, из-за большого 
количества резонансов, данные на  рисунке 
разделены на  устойчивые и  неустойчивые ре-
зонансы. 

Количество наложений резонансов пред-
ставлено на рис. 6.

Наиболее загруженной резонансами зоной 
является область при наклонениях 70° и  110°. 
В этой зоне действуют как устойчивые, так и не-
устойчивые резонансы. Кроме того, в  области 
от  11540 км до  11570 км по  большой полуоси, 
начинают проявляться точечные резонансы, 
которые не  пронизывают всю рассмотренную 
область. Причем при наклонениях от  0° до  30° 
и от 150° до 180° появляются только устойчивые 
резонансы, а  при наклонениях от  60° до  115°  – 
в основном неустойчивые резонансы.

Картина распределения вековых апсидаль-
но-нодальных резонансов с прецессией орбиты 
Солнца представлена на рис. 7.

Рис. 4. Распределение вековых резонансов, связан-
ных со  средним движением Солнца в  области ор-
битального резонанса 1:5 со  скоростью вращения 
Земли.

14 480

14 460

14 440

14 420

14 400
0

a,
 к

м

30 60 90
i, град

120 150 180

Либрация

Либрация/
Циркуляция

ψ1
ψ8
ψ9
ψ11
ψ12
ψ13
ψ15

ψ1
ψ3
ψ8
ψ9
ψ13
ψ15

Рис. 5. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с прецессией орбиты 
Луны в области орбитального резонанса 1:7 со ско-
ростью вращения Земли: (а) – все устойчивые 
резонансы; (б) – все неустойчивые резонансы.
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Рис. 6. Количество наложений апсидально-нодаль-
ных резонансов, связанных с  прецессией орбиты 
Луны, в области орбитального резонанса 1:7.
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Рис. 7. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с  прецессией орби-
ты Солнца в  области орбитального резонанса 1:7 
со скоростью вращения Земли.
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Все рассмотренное пространство по  боль-
шой полуоси пронизывают только устой-
чивые резонансы 

 

 ψ ω ω1,S S S= − ′( ) + − ′Ω Ω , 


 

 ψ ω ω2,S S S= − ′( ) − + ′Ω Ω ,   

ψ ω13,S S S= − ′( ) + ′Ω Ω  и ре-
зонансы, которые являются их геометрически-
ми аналогами. Резонанс Лидова–Козаи явля-
ется устойчивым только при наклонении 115° 
и только при большой полуоси меньше 11530 км. 
Остальные резонансы являются либо неустой-
чивыми, либо проявляют свое действие точечно 
на некоторых участках.

На рис. 8 представлены вековые резонансы 
со  средним движением Луны. В  области орби-
тального резонанса 1:7 они проявляются только 
при наклонениях от  0° до  20° и  от 160° до  180° 
и для больших полуосей от 11510 км до 11535 км. 
Резонансы не  пронизывают пространство, 
а действуют точечно.

Вековые резонансы со  средним движени-
ем Солнца, наоборот, имеют пронизывающую 
структуру (рис. 9). По аналогии с областью орби-
тального резонанса 1:5, здесь вековые резонансы 

со  средним движением Солнца имеют зеркаль-
ную структуру относительно наклонения 90° и у 
каждого резонанса из  прямого движения есть 
свой аналог резонанса в обратном движении.

Общей особенностью всех вековых резо-
нансов в  области орбитального резонанса 1:7 
является наличие участков точечного влияния 
резонансов, начиная с больших полуосей выше 
11540 км.

Карта распределения вековых апсидаль-
но-нодальных резонансов, связанных с прецес-
сией орбиты Луны в  области орбитального ре-
зонанса 1:9 со скоростью вращения Земли (рис. 
10), показывает, что зона покрытия резонансов 
намного меньше, чем у двух предыдущих обла-
стей. Количество наложений резонансов сокра-
щается, но  возрастает количество точечно дей-
ствующих резонансов, которые расположены 
в основном по наклонениям от 0° до 30° и от 150° 
до 180°.

В области орбитального резонанса 1:9 дей-
ствуют в  основном точечные апсидально-но-
дальные резонансы с прецессией орбиты Солнца 
(рис. 11), которые распределены по наклонениям 
от 60° до 75° и от 105° до 120°, и в околоэквато-
риальных зонах с  большими полуосями около 
9725 км и 9775 км. Только резонансы ψ13 17 0− ≈,S  
имеют устойчивую пронизывающую структуру 
при наклонениях 0°, 90° и 180°, как и в осталь-
ных рассмотренных выше областях. Лунный ре-
зонанс ψ17 0,L ≈  является аналогом солнечных 
резонансов ψ13 17 0− ≈,S  и имеет такую же зону по-
крытия. 

Кроме того, в  экваториальных зонах нахо-
дится большое количество точечных вековых 
резонансов со средним движением Луны, но они 
уже распределены при больших полуосях около 
9715 км, 9750 км и 9790 км (рис. 12).

Рис. 8. Распределение вековых резонансов, связан-
ных со средним движением Луны в области орбиталь-
ного резонанса 1:7 со скоростью вращения Земли.
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Рис. 9. Распределение вековых резонансов, связан-
ных со  средним движением Солнца в  области ор-
битального резонанса 1:7 со  скоростью вращения 
Земли.
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Рис. 10. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с  прецессией орбиты 
Луны в области орбитального резонанса 1:9 со ско-
ростью вращения Земли.
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Вековые резонансы, связанные со  средним 
движением Солнца (рис. 13), имеют почти зер-
кальную структуру относительно наклонения 
90°. Здесь резонанс 

 ψ6, ( )S S= ′ + − ′n Ω Ω  имеет 
устойчивое влияние только при большой полу-
оси ниже, чем 9765 км, несмотря на то, что его 
аналог   ψ5, ( )S Sn= ′ − − ′Ω Ω  для обратного движе-
ния действует во  всей области. Точечное влия-
ние резонансов наблюдается в  экваториальных 
зонах и при наклонениях 65° и 115°.

В работе (Блинкова, Бордовицына, 2022) 
представлено распределение орбитальных резо-
нансов 1:5, 1:7 и 1:9 со скоростью вращения Зем-
ли и показано, что область хаотизации движения 
объектов проходит по  линии действия второй 
компоненты орбитального резонанса. Вызвано 
это, по всей видимости, многократным пересе-
чением с вековыми резонансами различных ти-
пов, которые в большинстве своем пронизыва-
ют рассматриваемые области.

Карты распределения апсидально-нодаль-
ных вековых резонансов, связанных со средним 
движением Луны, для областей орбитальных 
резонансов 1:10 и 1:11 представлены на рис. 14. 
В области резонанса 1:10 (рис. 14а) практически 
все пронизывающие резонансы являются устой-
чивыми, кроме резонанса ψ18,L, который дей-
ствует неустойчиво при наклонениях 60° и 120°. 
Наложений резонансов практически не просле-
живается, кроме небольших точечных участков. 

Данные, представленные для области орби-
тального резонанса 1:11 на рис. 14б показывают, 
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Рис. 11. Распределение вековых апсидально-но-
дальных резонансов, связанных с  прецессией ор-
биты Солнца в области орбитального резонанса 1:9 
со скоростью вращения Земли.
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Рис. 14. Распределение вековых апсидально-нодаль-
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что здесь действует только два резонанса, про-
низывающих рассмотренную область. Это ре-
зонанс ψ17,L, который действует во всех рассмо-
тренных выше областях, и  резонанс ψ2,L. Все 
остальные резонансы действуют точечно, в  ос-
новном при наклонениях от 0° до 35° и от 140° 
до 180°. Для наклонения 65° и 115° точечно неу-
стойчиво действует резонанс ψ19,L.

На карте распределения вековых апсидаль-
но-нодальных резонансов, связанных с  пре-
цессией орбиты Солнца (рис. 15), показано, 
что пронизывают рассмотренные области толь-
ко резонансы ψ13 17− ,S при наклонениях 0°, 90° 
и 180°, остальные резонансы действуют точечно.

Карты распределения вековых резонансов, 
связанных со средним движением Луны (рис. 16) 
показывают, что действуют эти резонансы только 
точечно и, в основном, в экваториальных зонах.

Вековые резонансы со  средним движением 
Солнца (рис. 17) тоже в большинстве своем про-
являются на  точечных участках, с  наибольшей 
концентрацией в  экваториальных зонах. В  об-
ласти орбитального резонанса 1:10 действуют 
и  некоторые резонансы, которые пронизывают 
структуру рассмотренного пространства. Для 
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Рис. 15. Распределение вековых апсидально-нодаль-
ных резонансов, связанных с  прецессией орбиты 
Солнца в области орбитального резонанса со скоро-
стью вращения Земли: (а) – 1:10; (б) – 1:11.
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Рис. 17. Распределение вековых резонансов, связан-
ных со средним движением Солнца в области орби-
тального резонанса со скоростью вращения Земли: 
(а) – 1:10; (б) – 1:11.
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области орбитального резонанса 1:11, пронизы-
вающие структуры вековых резонансов распо-
ложены ниже отметки большой полуоси 8580 км.

В работе (Блинкова, Бордовицына, 2022) по-
казано, что орбитальные резонансы 1:10 и  1:11 
не  влияют на  хаотизацию движения. Связано 
это, по-видимому, с тем, что в этих зонах вековые 
резонансы, в  большинстве своем, проявляются 
как точечные, и нет многократных пересечений 
с компонентами орбитальных резонансов, в от-
личие от областей орбитальных резонансов 1:5, 
1:7 и 1:9 со скоростью вращения Земли.

АНАЛИЗ ЭВОЛЮЦИИ ОБЪЕКТОВ, 
НАСЕЛЯЮЩИХ РАССМАТРИВАЕМЫЕ 

ОБЛАСТИ

Исследуем особенности динамики объектов, 
расположенных в  рассмотренных резонансных 
областях, на  примере модельных объектов. Эво-
люция резонансных характеристик приведена 

в работе на интервале времени 20 лет. Рассматри-
ваемые объекты находятся на  довольно низких 
орбитах и совершают за сутки от 5 до 11 оборотов, 
поэтому данный интервал достаточен для демон-
страции поведения резонансных характеристик. 
Кроме того, на этом интервале графическое пред-
ставление характеристик более наглядно, чем 
на интервале 100 лет, используемом для представ-
ления эволюции элементов орбиты объектов. В то 
же время эволюционная картина на большом ин-
тервале времени более информативна, поэтому 
для анализа эволюции, также из соображений на-
глядности, использован интервал 100 лет.

Первый объект (i = 115°, a = 14426 км) подвер-
жен устойчивому влиянию второй компоненты 
мультиплета орбитального резонанса 1:5 и  неу-
стойчивому влиянию третьей компоненты муль-
типлета резонанса 1:5. Его динамика представлена 
на рис. 18. Кроме того, на данный объект действу-
ют три устойчивых апсидально-нодальных α-ре-
зонанса с  прецессией орбиты Луны и  резонанс 
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Рис. 18. Особенности динамики модельного объекта, движущегося в области орбитального резонанса 1:5: (а) – эволюция 
элементов орбиты объекта; (б) – резонансные характеристики  
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
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стики 
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
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Лидова–Козаи. Резонансы имеют смещенные 
центры колебаний резонансного аргумента и удов-
летворяют условию (5). Параметр MEGNO растет 
линейно, что говорит о неустойчивости движения. 

Приведем пример объекта (рис. 19), кото-
рый имеет такое же наклонение как у  объекта 
на  рис. 18, но  расположен выше орбитального 
резонанса (i = 115°, a = 14459 км). Этот объект 
подвержен идентичному набору вековых α-ре-
зонансов, но параметр MEGNO остается мень-
ше 2. Данный пример показывает, что вывод, 
сделанный в работе (Александрова и др., 2021а), 
что наложение устойчивых вековых резонансов 
не приводит к хаотизации движения объекта.

На рис. 20 приведен пример орбитальной 
эволюции объекта со  следующими значения-
ми наклонения орбиты и  большой полуоси: 
i = 60°, a = 11513 км. Объект подвержен устой-
чивому влиянию второй компоненты мульти-
плета орбитального резонанса 1:7 со  скоро-
стью вращения Земли и  двум неустойчивым 
апсидально-нодальным резонансам ψ7 0,L ≈  

и  ψ18 0, .L ≈  Как и  у объекта на  рис. 18,  
параметр MEGNO растет из-за наложения резо-
нансов различных типов. 

Следующие два примера (рис. 21 и  22) взя-
ты с  одинаковыми наклонениями 90°, но  раз-
ными большими полуосями а  = 11517 км 
и а = 11553 км соответственно. В обоих случаях 
действуют вековые апсидально-нодальные ре-
зонансы ψ17 0,L ≈ , ψ13 17 0− ≈,S , что характерно 
для выбранного наклонения. В  первом случае 
добавляется влияние первой, второй и  четвер-
той компонент мультиплета орбитального резо-
нанса 1:7, во  втором случае орбитальные резо-
нансы отсутствуют. Пример на  рис. 22 еще раз 
подтверждает тот вывод, что совместное дей-
ствие устойчивых вековых резонансов не  при-
водит к возникновению хаотичности движения. 
Что касается эволюции орбиты объекта на рис. 
21, то здесь нельзя однозначно сказать, что ха-
отичность возникает за  счет наложения устой-
чивой и неустойчивой компонент орбитального 
резонанса, тем более что первые 20 лет первая 
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Рис. 19. Особенности динамики модельного объекта, движущегося в области орбитального резонанса 1:5, но не 
подверженного его действию: (а)  – эволюция элементов орбиты объекта; (б)  – резонансные характеристики 


 

 ψ ω ω5 2 2,L = − ′( ) + − ′Ω ΩL L, ψ ω ω5 2 2, ;L = − ′( ) + − ′Ω ΩL L  (в)  – резонансные характеристики 


 

ψ ω16 2, ,L = − ′( ) − ′Ω ΩL L  ψ ω16 2, ;L = − ′( ) − ′Ω ΩL L  (г) – резонансные характеристики  ψ ω20 = , ψ ω20 = .
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и четвертые компоненты мультиплета орбиталь-
ного резонанса устойчивы, но параметр MEG-
NO в  это время имел тенденцию роста. Это 
говорит о  том, что значительный вклад в  рост 
хаотичности движения вносит наложение резо-
нансов различных типов, которое, как указывал 
Чириков (1977), является главным источником 
хаотичности.

Выводы, сделанные для областей орбиталь-
ных резонансов 1:5 и 1:7 со скоростью вращения 
Земли, справедливы и для других зон орбиталь-
ных резонансов, расположенных ниже, поэто-
му примеры динамической эволюции объектов 
из этих областей здесь не приводятся. 

Стоит отметить, что для более высоких ор-
бит хаотичность может возникать и в отсутствии 
действия орбитального резонанса при совмест-
ном действии устойчивых и неустойчивых веко-
вых резонансов наблюдается рост хаотичности 
движения (Александрова и др., 2021а).

Кроме того, действие вековых резонансов 
в  рассматриваемой части ОКП не  приводит 

к  возрастанию эксцентриситетов орбит, в  то 
время как для более высоких орбит этот фак-
тор проявляется весьма отчетливо. Причем, чем 
больше начальный эксцентриситет орбиты, тем 
более стремительно происходит его возрастание 
(Бордовицына, Томилова, 2014). 

В связи с  этим был проведен эксперимент 
по  выявлению подобной зависимости в  рассма-
триваемой области ОКП. Для этого эксперимен-
та был взят объект, приведенный на рис. 21, нахо-
дящийся под действием орбитального резонанса 
1:7 со  скоростью вращения Земли и  нескольких 
нодальных резонансов, и промоделировано дви-
жение трех объектов с аналогичными значениями 
орбитальных элементов, за исключением эксцен-
триситета. Были выбраны следующие значения 
эксцентриситета: 0.2, 0.3 и  0.4. Кроме того, при 
моделировании высокоэллиптичных объектов 
учитывалась атмосфера. Особенно сильно влия-
ние атмосферы проявляется у объекта с e = 0.4.

Исследование резонансной динамики этих 
объектов показало, что на них действует тот же 
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Рис. 20. Особенности динамики модельного объекта с параметрами, движущегося в области орбитального резонан-
са 1:7: (а) – эволюция элементов орбиты объекта; (б) – резонансные характеристики  

  Φ Ω2 7= + + −( ) ( ),ω θM  
Φ Ω2 5= + + −( ) ( );ω θM  (в)  – резонансные характеристики 

 

 ψ ω ω7 2 2, ,L L L= − ′( ) + + ′Ω Ω  
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набор резонансов, что и  на исходный объект, 
приведенный на рис. 21.

Из рис. 23 видно, что увеличение начального 
эксцентриситета не приводит к его росту в про-
цессе эволюции и лишь незначительно увеличи-
вает диапазон его изменения во времени, одна-
ко вызывает существенное увеличение скорости 
хаотизации движения.

ДИНАМИКА РЕАЛЬНЫХ ОБЪЕКТОВ 
РАССМАТРИВАЕМОЙ ЗОНЫ ОКП 

И ВОЗМОЖНОСТИ ЕЕ ИСПОЛЬЗОВАНИЯ 
ДЛЯ РАЗМЕЩЕНИЯ НОВЫХ 

И УТИЛИЗАЦИИ ОТРАБОТАВШИХ 
ОБЪЕКТОВ

Как показано в  выпусках ежеквартальных 
новостей по  космическому мусору (https://
orbitaldebris.jsc.nasa.gov/quarterly-news/), публи-
куемых NASA, число объектов в  рассматрива-
емой области ОКП в  последние годы неуклон-
но растет. Такое стремительное увеличение 

популяции космических объектов в  низкоор-
битальном сегменте ОКП представляет собой 
серьезную угрозу для действующих спутников 
и может вскоре привести к переполнению этой 
орбитальной области и  большим рискам стол-
кновения 

Ниже мы  рассмотрим орбитальную эволю-
цию на  столетнем интервале времени реаль-
ных объектов из каталога NORAD, движущихся 
в рассматриваемой области ОКП.

На рис. 24 цветными кружками показа-
но начальное положение объектов из  каталога 
NORAD. Распределение значений эксцентри-
ситетов по  цвету дано в  легенде справа от  ри-
сунка. Кроме того, на рис. 24 выделены области 
действия орбитальных резонансов со скоростью 
вращения Земли. Помимо орбитальных резо-
нансов, как было показано выше, в данной об-
ласти действуют различные вековые и полувеко-
вые резонансы.

Всего по данной области в каталоге NORAD 
есть информация о  264 объектах. Из них 
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Рис. 21. Особенности динамики модельного объекта с параметрами, движущегося в области орбитального резонан-
са 1:7: (а)  – эволюция элементов объекта; (б)  – резонансные характеристики  



 Φ Ω1 7= + + −( ) ,M ω θ  
Φ Ω1 7= + + −( ) ;M ω θ  (в) – резонансные характеристики  

  Φ Ω2 7= + + −( ) ( ),ω θM  Φ Ω2 5= + + −( ) ( );ω θM  
(г) – резонансные характеристики   



Φ Ω4 7= − + −( ) ,M ω θ  Φ Ω4 7= − + −( ) ;M ω θ  (д) – резонансные характе-
ристики   ψ17, ,L L= − ′( )Ω Ω  ψ17, ;L L= − ′( )Ω Ω  (е) – резонансные характеристики ψ13 17− , ,S ψ13 17− , .S

https://orbitaldebris.jsc.nasa.gov/quarterly-news/
https://orbitaldebris.jsc.nasa.gov/quarterly-news/
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24 объекта расположены в области орбитально-
го резонанса 1:5 со  скоростью вращения Зем-
ли, но  не подвержены его влиянию. Причем 
22 из  них  – это спутники связи группировки 
O3b, расположенные на  почти круговых орби-
тах в  экваториальной области с  наклонением, 
близким к 0○. В области орбитального резонан-
са 1:7 со  скоростью вращения Земли располо-
жены два объекта, но они также не подвержены 
его влиянию. И  три объекта движутся по  эл-
липтичным орбитам в  области резонанса 1:6 
со скоростью вращения Земли их время жизни 
не более 10 лет.

Далее для демонстрации технической загру-
женности области была промоделирована ор-
битальная эволюция всех реальных объектов 
рассматриваемой зоны на  столетнем интервале 
времени. Изменение положения объектов, по-
падающих в рассматриваемую область, в плоско-
сти “большая полуось  – наклонение” показано 
на рис. 25а цветными крестиками (цвет крестика 
соответствует значению эксцентриситета из  ле-
генды). Здесь следует отметить, что у  объектов, 
расположенных на  эллиптичных орбитах, с  те-
чением времени наблюдается уменьшение боль-
шой полуоси и  эксцентриситета орбиты. Это 
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Рис. 22. Особенности динамики модельного объекта с параметрами, движущегося в области орбитального резонан-
са 1:7 со скоростью вращения Земли, но не подверженного его действию: (а) – эволюция элементов объекта; (б) – 
резонансные характеристики   ψ17, ,L L= − ′( )Ω Ω  ψ17, ;L L= − ′( )Ω Ω  (в) – резонансные характеристики ψ13 17− , ,S  
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Рис. 23. Влияние начального эксцентриситета на долговременную орбитальную эволюцию.
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происходит из-за того, что перигей этих объектов 
изначально находится в области действия атмос-
феры, что подтверждается данными на рис. 25б. 
В то же время орбиты объектов с почти круговым 
движением практически не меняются.

Для того чтобы в  полной мере оценить тех-
ническую загруженность рассматриваемой об-
ласти помимо объектов, расположенных в этой 
зоне (рис. 24, 25), необходимо учитывать объ-
екты, орбиты которых пересекают эту зону. На 
рис. 26 показано изменение большой полуоси 
на столетнем интервале времени для всей сово-
купности каталогизированных объектов и  тех, 

которые изначально находились в этой зоне, так 
и  объектов, пересекающих ее в  процессе эво-
люции за  счет эллиптичности своей орбиты. 
Из рис. 26 видно, что объекты, расположенные 
на  высокоэллиптичных орбитах, с  большими 
полуосями, превосходящими 16000 км, активно 
проникают в  рассматриваемую область. Следо-
вательно, при размещении новых спутниковых 
систем следует учитывать и этот фактор.

В целом, внеатмосферные объекты рассма-
триваемой области ОКП демонстрируют орби-
тальную эволюцию без значительных измене-
ний элементов орбиты даже на  приполярных 
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Рис. 25. Орбитальная эволюция всей совокупности 
объектов, представленных на рис. 24: (а) – в плоско-
сти “большая полуось – наклонение”; (б) – в пло-
скости “перигейное расстояние  – наклонение” 
на столетнем интервале времени.
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Рис. 26. Орбитальная эволюция всей совокупности 
объектов из каталога NORAD, пересекающих в про-
цессе эволюции на  столетнем интервале времени 
рассматриваемую область: (а) – в плоскости “боль-
шая полуось – наклонение”; (б) – в плоскости “пе-
ригейное расстояние – наклонение”.
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высокоэллиптичных орбитах (рис. 23), не каса-
ющихся атмосферы в  перигее. Поэтому после 
окончания срока службы космические аппараты 
следует спускать на более низкие орбиты для их 
утилизации. Как фактор самоочистки можно ис-
пользовать в нижней части данной области ОКП 
орбиты с  эксцентриситетом больше 0.3. Для 
иных объектов стоит выбирать орбиты паркин-
га, избегая области, в которых функционируют 
спутниковые системы, а также вне зон действия 
орбитальных резонансов, поскольку совмест-
ное влияние вековых и  орбитальных резонан-
сов (Томилова и др., 2018; 2019; 2021) приводит 
к хаотизации движения, что усложняет процесс 
прогнозирования движения на  длительных ин-
тервалах времени.

ЗАКЛЮЧЕНИЕ

Содержание основных результатов, пред-
ставленных в работе, состоит в следующем.

Выявленные вековые резонансы обильно 
пронизывают области орбитальных резонансов 
1:5, 1:7 и 1:9 со скоростью вращения Земли. Из-за 
многократного наложения вековых резонансов 
и  второй компоненты орбитального резонанса 
происходит хаотизация движения объектов. В то 
же время в  областях орбитальных резонансов 
1:10 и 1:11 такая хаотизация не наблюдается из-
за редкого пересечения вековых и орбитальных 
резонансов, поскольку вековые резонансы ме-
нее плотно покрывают рассмотренные области 
и проявляются в основном точечно. 

Для размещения новых спутниковых систем 
и при выборе орбит паркинга для отработавших 
космических аппаратов следует избегать обла-
стей действия орбитальных резонансов и  обла-
стей с наложением резонансов различных типов, 
учитывая при этом зоны функционирования 
действующих спутников.

Исследование выполнено с использованием 
суперкомпьютера “СКИФ Cyberia” Томского 
государственного университета. 

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 19-72-10022, https://
rscf.ru/project/19-72-10022/
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