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Путем численных экспериментов изучено влияние скорости собственного вращения, ориента-
ции оси вращения и параметров фигуры астероида на величину возмущений в его вращательной 
динамике, возникающих при тесном сближении с  Землей. Рассмотрена динамика трех астеро-
идов: (99942) Апофис, (367943) Дуэнде и 2012 TC4. Установлено, что для астероидов с относи-
тельно медленным вращением (период P > 5 ч) характерны существенные возмущения: в случае 
Апофиса (P ≈ 30 ч) при сближении с Землей в 2029 г. изменения периода вращения могут дости-
гать десятков часов, а отклонения в ориентации оси вращения – десяти градусов. В случае Дуэнде 
(P ≈ 8 ч) при сближении с Землей в 2013 г. изменение P не превышало нескольких часов, откло-
нения в ориентации оси вращения могли составить десятки градусов. Для астероидов с быстрым 
вращением (P < 1 ч) возмущения пренебрежимо малы: в случае астероида 2012 TC4 (P ≈ 12 мин.) 
при его сближении с Землей в 2017 г. изменения P не превышали 10–5 мин., отклонения оси враще-
ния составляли менее 0.01°. Показано, что для астероидов с медленным вращением погрешности 
в определении параметров фигуры астероида могут приводить к заметным неточностям в оцен-
ке величин возмущений. Напротив, неопределенность знания фигуры астероида с  быстрым 
вращением не влияет на оценку возмущений в его вращательной динамике. В случае Апофиса, 
возмущения во вращательном движении в ходе предстоящего в 2029 г. сближения с Землей мо-
гут привести к  уменьшению величины параметра A2, характеризующего эффект Ярковского, 
до –2.4×10–14 а. е./сут.2 или к увеличению до –3.2×10–14 а. е./сут.2. Возмущения во вращательной 
динамике Дуэнде при сближении с Землей в 2013 г. и астероида 2012 TC4 при сближении с Землей 
в 2017 г. не оказали заметного влияния на их значения A2.
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ВВЕДЕНИЕ

В настоящей работе мы  исследовали зави-
симость величин возмущений, возникающих 
во вращательной динамике астероидов при тес-
ных сближениях с  Землей, от  скорости враще-
ния, ориентации оси вращения и  параметров, 
характеризующих фигуру астероида. Как пока-
зали различные исследования (см., например, 
Scheeres и  др., 2000; 2004; Boldrin и  др., 2020; 

Мельников, 2022), тесное сближение с планетой 
может существенным образом повлиять на вра-
щательную динамику астероида.

Эмпирическая зависимость скорости соб-
ственного вращения астероида от  его размера 
(среднего диаметра D), представленная, на-
пример, в (Hestroffer и др., 2019; Hu и др., 2021; 
Fenucci и др., 2024), показывает, что с уменьше-
нием размера наблюдается увеличение скоро-
сти. Периоды вращения P астероидов с D < 100 м 
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обычно имеют значения от  нескольких часов 
до единиц–десятков минут. Минутные периоды 
обнаруживаются у астероидов с D ~ 10 м, веро-
ятно, представляющих собой монолитные тела. 
Астероидам размером в  сотни метров присуще 
вращение с  P > 5 ч. Поскольку бóльшая часть 
астероидов, сближающихся с  Землей, (АСЗ) 
представляет собой тела малых размеров, важно 
детально исследовать то, как сближение влияет 
на их вращательную динамику. Одной из целей 
настоящей работы было выявление отличий 
во влиянии сближения с Землей на вращатель-
ную динамику медленно вращающихся асте-
роидов (D = 100–1000  м, P = 5–100 ч) и  весь-
ма малых астероидов с  быстрым вращением 
(D ~ 10 м, P < 1 ч). Кроме того, для большинства 
астероидов имеется лишь оценка D, в  то время 
как на величину возмущений, возникающих при 
сближении с  Землей, существенным образом 
влияет фигура астероида (определяющая момен-
ты инерции), которая обычно неизвестна. Еще 
одна цель работы заключалась в изучении влия-
ния неопределенности знания фигуры астерои-
да на оценки возмущений во вращательной ди-
намике астероида, получаемых при численном 
моделировании его тесного сближения с Землей.

Негравитационные эффекты: давление 
солнечного излучения, эффект Ярковского 
(ЭЯ) и  YORP-эффект (Yarkovsky–O’Keefe–
Radzievskii–Paddack) играют заметную роль 
в долговременной динамике малых астероидов. 
Особенно важен учет этих эффектов при изуче-
нии динамики АСЗ. В  частности, как показало 
изучение динамики астероида (99942) Апофис, 
вековое изменение его орбиты, вызванное дей-
ствием ЭЯ, может увеличить риск катастро-
фического столкновения с  Землей (Chesley, 
2006; Giorgini и  др., 2008; Соколов и  др., 2012; 
Шор и др., 2012; Farnocchia и др., 2013a; 2013b). 
С  уменьшением размера астероида значимость 
негравитационных эффектов возрастает. Влия-
ние сближений с планетами для ряда астероидов 
(в том числе и с D < 100 м) на их вращательную 
динамику и  величину ЭЯ было рассмотрено 
нами ранее в  (Мельников, 2022; Мартюшева, 
Мельников, 2023). Было показано, что тесные 
сближения малых астероидов с планетами и воз-
никающие возмущения во  вращательном дви-
жении астероидов могут привести к изменению 
величины ЭЯ для них почти в два раза. Поэтому 
важно оценивать влияние возмущений во  вра-
щательной динамике астероида на величину ЭЯ.

Работа имеет следующую структуру. В  пер-
вом разделе даны постановка задачи и  краткая 

характеристика исследуемых астероидов. Вто-
рой раздел содержит краткое описание теории 
ЭЯ и  определение одного из  характеризующих 
его параметров A2. На основе изложенной ме-
тодики определения ЭЯ и известных из анализа 
астрометрических наблюдений величин A2 уточ-
нены параметры вращения ряда изучаемых асте-
роидов. В  третьем разделе описаны результаты 
численных экспериментов по  моделированию 
тесных сближений астероидов с  Землей. В  чет-
вертом разделе изучено влияние неопределенно-
сти знания фигуры астероида на оценку возму-
щений, возникающих при сближениях с Землей. 
В пятом разделе рассмотрено влияние возмуще-
ний на величину A2. В конце работы приведены 
основные результаты.

ПОСТАНОВКА ЗАДАЧИ И ПАРАМЕТРЫ 
ИССЛЕДУЕМЫХ АСТЕРОИДОВ

Мы рассмотрели и  сопоставили вращатель-
ную динамику трех АСЗ в ходе тесного сближе-
ния с Землей: относительно крупного (D ≈ 340 м) 
астероида (99942) Апофис с медленным враще-
нием (P ≈ 30 ч), весьма малого (D ~ 10 м) асте-
роида 2012 TC4, обладающего быстрым враще-
нием (P ≈ 12 мин.), и астероида (367943) Дуэнде 
(P ≈ 8 ч, D ≈ 30 м), представляющего собой про-
межуточный случай. Для Апофиса проводи-
лось моделирование его сближения с  Землей, 
предстоящее в 2029 г., для Дуэнде – сближения, 
имевшего место в 2013 г., а для 2012 TC4 рассма-
тривалось сближение, произошедшее в 2017 г.

Потенциально опасный с точки зрения стол-
кновения с  Землей астероид Апофис (см. под-
робности, например, в  Chesley, 2006; Giorgini 
и др., 2008; Соколов и др., 2008; 2012; Шор и др., 
2012; Farnocchia и  др., 2013b) был обнаружен 
19 июня 2004 г. В 2029 г. произойдет очередное 
тесное сближение Апофиса с Землей на рассто-
яние около 38000 км от  геоцентра, что должно 
вызвать значительные возмущения в движении 
астероида. Вращательная динамика Апофиса 
ранее рассматривалась различными исследова-
телями (Scheeres и др., 2005; Pravec и др., 2014; 
Souchay и  др., 2014; 2018; Benson и  др., 2023). 
В наших предыдущих работах (Лобанова, Мель-
ников, 2023; Lobanova, Melnikov, 2024) путем 
численного моделирования изучались возму-
щения, которые будут иметь место во  враща-
тельном движении Апофиса при сближении 
с Землей в 2029 г. Было установлено, что период 
вращения Апофиса и ориентация оси вращения 
могут претерпеть существенные изменения, 
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которые, в свою очередь, приведут к изменению 
величины ЭЯ.

Вращательная динамика астероида Дуэн-
де при его тесном (расстояние около 27700 км) 
сближении с  Землей в  2013 г. рассматривалась 
в  работах (Devyatkin и  др., 2016; Benson и  др., 
2020; Moskovitz и  др., 2020; Мельников, 2022). 
Анализ имеющихся наблюдений показал, что 
скорость вращения Дуэнде из-за возмущений, 
вызванных сближением, могла измениться поч-
ти на  10%. Отметим, что вращательное состоя-
ние Дуэнде до  момента сближения неизвестно. 
Результаты численного моделирования (Benson 
и  др., 2020; Мельников, 2022) указывают, что 
возмущения в  величине периода вращения Ду-
энде могли достигать 30%.

Динамика астероида 2012 TC4 при его сбли-
жениях с Землей, имевших место в 2012 (рассто-
яние около 95000 км) и  2017 (расстояние около 
50000 км) годах, детально изучалась в работе (Lee 
и др., 2021). Посредством анализа и моделирова-
ния кривых блеска было установлено, что пери-
оды вращения астероида в 2012 и 2017 гг. замет-
но отличались. В качестве одного из возможных 
объяснений в (Lee и др., 2021) было выдвинуто 
предположение о действии YORP-эффекта.

В наших предыдущих работах (Лобанова, 
Мельников, 2023; Lobanova, Melnikov, 2024), 
посвященных исследованию динамики Апофи-
са, для проведения численных экспериментов 
по  моделированию вращательной динамики 
астероида был разработан программный ком-
плекс на основе интегратора DOP853, реализу-
ющего явный метод Рунге–Кутты 8-го порядка. 
Концепция и  возможности интегратора под-
робно описаны в  (Hairer и  др., 1993). Исполь-
зовались следующие предположения: астероид 
представляет собой твердое тело, его фигура ап-
проксимируется трехосным эллипсоидом. Зем-
ля рассматривалась как гравитирующая точка. 

В начальный момент времени задавалось враще-
ние астероида вокруг одной оси, совпадающей 
с  осью максимального момента инерции. Ори-
ентация оси вращения относительно нормали 
к плоскости орбиты определялась углом γ, при-
нимающим значения от 0° до 180°. Посредством 
численного интегрирования уравнений дви-
жения (см. детали в (Lobanova, Melnikov, 2024)) 
исследовалась эволюция величины периода соб-
ственного вращения астероида P и угла γ.

Динамика астероида рассматривалась 
на  участке его орбиты, ограниченном геоцен-
трической сферой радиусом 100 RE. Выбранный 
размер области, в которой исследуется динамика 
астероида, типичен для рассматриваемой задачи 
(см., например, Araujo, Winter, 2014; Richardson 
и др., 1998; Boldrin и др., 2020; Мельников, 2022). 
Проведенный в (Lobanova, Melnikov, 2024) ана-
лиз орбитальной динамики Апофиса показал, 
что его движение в  окрестности точки сближе-
ния с  Землей можно аппроксимировать невоз-
мущенной гиперболической геоцентрической 
орбитой. В  работе (Lobanova, Melnikov, 2024) 
дана методика построения такой орбиты на ос-
нове эфемерид NASA JPL (https://ssd.jpl.nasa.
gov/horizons/). Для Дуэнде и  2012 TC4 можно 
построить орбиты такого же рода, причем па-
раметры геоцентрических орбит для всех иссле-
дуемых астероидов в рассматриваемых событиях 
имеют близкие значения. Существенно отлича-
ются лишь параметры, характеризующие враще-
ние АСЗ и их фигуры.

Принятые при моделировании параметры 
орбит, инерционные параметры астероидов 
и  параметры вращения, определенные на  ос-
нове анализа наблюдений, указаны в  табл. 1, 
а  именно: величина эксцентриситета e и  ми-
нимальное расстояние сближения d = a (e – 1) 
(перицентрическое расстояние), выражен-
ное в  средних радиусах Земли, RE = 6371 км; 

Таблица 1. Принятые при моделировании орбитальные и физические параметры исследуемых астероидов

Астероид d/RE e A/C B/C P, ч γ, град

(99942) Апофис 5.96 4.26 0.73 0.95 30.60 140

(367943) Дуэнде 5.34 4.22 0.25 0.85 8.72 27 (160)

2012 TC4 7.86 6.36 0.42 0.81 0.20 105 (160)

Примечание: данные о величинах моментов инерции, периоде вращения и наклоне оси вращения Апофиса взяты из (Pravec 
и др., 2014), Дуэнде – из (Benson и др., 2020), астероида 2012 TC4 – из (Lee и др., 2021). Значения d и e получены на основе 
эфемерид NASA JPL (https://ssd.jpl.nasa.gov/horizons/).

https://ssd.jpl.nasa.gov/horizons/
https://ssd.jpl.nasa.gov/horizons/
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отношения главных центральных моментов 
инерции A/C и  B/C (A < B < C); период вра-
щения астероида P и  угол γ между нормалью 
к  плоскости орбиты и  осью вращения. Отме-
тим, что в случае Апофиса указанные в табл. 1 
параметры орбиты отличаются от приведенных 
в  (Lobanova, Melnikov, 2024), поскольку в  на-
стоящей работе мы использовали обновленные 
данные эфемериды NASA JPL. 

Ориентация вектора углового момента вра-
щения астероида обычно определена с  боль-
шой погрешностью. Поэтому задание реаль-
ной величины угла γ может быть затруднено. 
При проведении численных экспериментов 
и  анализе их результатов в  случае астерои-
дов 2012 TC4 и  Дуэнде мы  рассматривали два 
возможных значения γ, а для Апофиса – одну 
величину γ. Далее будет дано объяснение та-
кому подходу. Отметим, что угол γ можно оце-
нить на основе величины ЭЯ, если она извест-
на из  анализа астрометрических наблюдений 
астероида. В  связи с  этим мы  приводим далее 
теорию ЭЯ, необходимую для определения γ. 
Эта теория необходима и  для последующей 
оценки влияния возмущений во  вращатель-
ной динамике астероида на величину ЭЯ после 
сближения с Землей.

ЭФФЕКТ ЯРКОВСКОГО И ПАРАМЕТР A2

Эффект Ярковского (Ярковский, 1901; Радзи-
евский, 1952; Rubincam, 1995; 1998; 2000; Farinella 
и др., 1998; Vokrouhlický, 1999; Vokrouhlický и др., 
2000; 2015a) играет существенную роль в  веко-
вой орбитальной динамике малых астероидов. 
Суть ЭЯ состоит в  возникновении негравита-
ционного ускорения в  орбитальном движении, 
вызываемого анизотропным переизлучением 
солнечной радиации поверхностью вращающе-
гося астероида. Одно из  проявлений действия 
ЭЯ – вековое изменение большой полуоси асте-
роида и  соответствующее изменение величины 
среднего движения астероида. Далее на  основе 
работы (Farinella и др., 1998) приведем краткую 
теорию, которую мы  использовали для оценки 
величины ЭЯ.

Для вычисления скорости изменения вели-
чины большой полуоси астероида под влиянием 
ЭЯ необходимо знать касательную компоненту 
возмущающей силы fY. В предположении о бли-
зости орбиты к  круговой формула для средней 
скорости будет иметь вид

	 d
d

Ya
t

f
n

=
2

,	 (1)

где n – среднее движение астероида. Суммарная 
величина ЭЯ складывается из суточной и сезон-
ной компонент. Рассмотрим, как вычисляется fY 
для сезонного и суточного ЭЯ. В обоих случаях 
мы будем иметь дело с выражением вида (Burns 
и др., 1979)	

	 f
R

T
c

T
T

fY = ( )2 4

ρ
εσ γν∆

 ,	 (2)

где ρ  – плотность астероида, R  – радиус одно-
родного шара с объемом, равным объему астеро-
ида, ε – излучательная способность поверхности 
астероида, σ  – постоянная Стефана–Больцма-
на, c  – скорость света, ΔTν  – разность темпе-
ратур между наиболее и наименее нагретой ча-
стями поверхности астероида, f (γ)  – некоторая 
функция угла γ между осью вращения астероида 
и перпендикуляром к плоскости его орбиты, T – 
средняя температура астероида, вычисляемая 
по  формуле T = (αS/(4εσ))1/4, где α  – коэффи-
циент поглощения на  поверхности астероида, 
S = 1370 Вт/м2 (aE/a)2  – поток солнечной энер-
гии для астероида с  большой полуосью a, aE  – 
большая полуось земной орбиты.

Суточный эффект Ярковского

Следуя (Peterson, 1976), в  работе (Farinella 
и др., 1998) положено f (γ) = cosγ и дана следую-
щая формула для температурного множителя:

	 ∆ Θ
Θ Θ

T
T

ω ω

ω ω
=

+ +
0 667

1 2 03 2 04 2
.

. .
,	 (3)

где параметр

	 Θω
ρ ω

πεσ
=

CK

T2 3
	 (4)

характеризует отношение времени температур-
ной релаксации к рассматриваемому периоду вре-
мени (в случае суточного ЭЯ берется период вра-
щения астероида P); C  – удельная теплоемкость 
астероида, K – коэффициент теплопроводности, 
ω = 2π/P  – частота вращения астероида. Таким 
образом, суточный ЭЯ будет приводить к da/dt > 
0 для наклонов оси вращения 0° < γ < 90° (про-
градное движение: направления вращения и  ор-
битального движения астероида совпадают) и da/
dt < 0 для 90° < γ < 180° (ретроградное движение). 
Отметим, что для значений параметра Θω >> 1 
(малых значений P) справедливо соотношение

	 ∆
Θ

T
T

Pω
ω 

−1 ,	

и возмущающая сила стремится к нулю.
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Сезонный эффект Ярковского

Согласно (Rubincam, 1995), f (γ) = –sin2γ 
и  для сезонного эффекта da/dt ≤ 0 при любом 
значении γ. Температурный множитель в работе 
(Farinella и  др., 1998) выведен на  основе работ 
(Rubincam, 1987; 1998; Afonso и  др., 1995). Он 
имеет вид

	 ∆T
T

An
n n=

−
1
3

1
1 τ

δsin ,	 (5)

где τ = π ls Θn / (2 R), параметр Θn вычисляется 
по формуле (4) с заменой частоты ω на среднее 
движение астероида n, а  величина l K Cns = ρ  
представляет собой характерную глубину про-
никновения тепловой волны. Множитель 
An sin δn, где An – амплитуда, δn – фаза гармони-
ки, соответствующей частоте ν = n из  разложе-
ния в ряд Фурье решения уравнения теплопро-
водности, находится по формуле

	 A e zn
i nδ τ

τ
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1
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Суммарная величина ЭЯ вычисляется 
по формуле

	 d
d Y Y
a
t n

f f
d s= +( )( ) ( )2

,	 (6)

где fY
(d) и fY

(s) определяются при помощи уравне-
ния (2) с учетом выражений (3) и (5) для темпе-
ратурного множителя в случаях суточного и се-
зонного ЭЯ соответственно.

Параметр A2

Величину ускорения, вызванного действием 
ЭЯ, для астероидов часто приводят в обозначе-
ниях из работы (Marsden и др., 1973), а именно: 
указывают трансверсальную компоненту уско-
рения A2, поскольку ее удается оценить на  ос-
нове анализа ряда астрометрических измерений 
(наземных, космических и  радарных) в  рамках 
процедуры улучшения орбиты. Далее перейдем 
от величины da/dt к параметру A2 в соответствии 
с формулой (Farnocchia и др., 2013a):

	 d
d
a
t

a e
nr

A g r= − ( )2 1 2

2 ,	 (7)

где g(r) – некоторая функция гелиоцентрическо-
го расстояния r. В работе (Farnocchia и др., 2013a) 

полагают g(r) = (r0/r)d, где r0 = 1 а. е. – нормали-
зующий параметр, а  значение показателя d для 
большинства АСЗ заключено в  пределах от  2 
до 3 и слабо влияет на величину da/dt. Обычно 
(см., например, Farnocchia и др., 2013b) прини-
мают d = 2. Мы поступим так же. В случае круго-
вой орбиты формула (7) принимает вид

	 d
d
a
t n

A g r= ( )2
2 ,	

а с учетом (1) получаем

	 A
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f

a
2

2

1
� � � � � �

�
�

�
�
�

Y
Y a.e
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Заметим, что параметр A2 является функци-
ей физических параметров астероида (см. под-
робнее (Farnocchia и  др., 2013b)) и  не зависит 
от  степени эксцентричности орбиты. Значение 
A2 для астероида, если оно определено, обычно 
приводится на сайте NASA JPL. Далее на осно-
ве известных величин A2 для исследуемых нами 
астероидов попытаемся оценить значение γ. За-
тем, после оценки величин возмущений во вра-
щательной динамике астероидов при их тесных 
сближениях с Землей, рассмотрим влияние воз-
мущений на A2.

Ориентация оси вращения исследуемых 
астероидов

Для Апофиса на  основе радарных (Brozović 
и  др., 2018) и  фотометрических (Pravec и  др., 
2014) наблюдений были получены оценки ори-
ентации вектора углового момента вращения 
в  эклиптических координатах на  эпоху J2000. 
На основе оценок долготы λ и  широты β нами 
был рассчитан угол наклона γ оси вращения 
Апофиса относительно нормали к плоскости его 
орбиты. Результаты приведены в табл. 2. В слу-
чае астероида 2012 TC4 в работе (Lee и др., 2021) 
на  основе фотометрических наблюдений уста-
новлено: λ = 103° и β = –88.5°, что, согласно на-
шим расчетам, соответствует γ = 160°.

Таблица 2. Оценка угла наклона оси вращения γ асте-
роида Апофис относительно нормали к плоскости 
его орбиты по результатам наблюдений (Brozovic 
и др., 2018; Pravec и др., 2014)

Наблюдения λ, град β, град γ, град

фотометрические 250 –75 148

радарные 247 –9 132
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Значение γ можно также оценить на основе 
величины A2, построив теоретическую зависи-
мость A2(γ) и определив при помощи нее значе-
ние γ, соответствующее величине A2, известной 
из  анализа наблюдательных данных (приведен-
ных на сайте NASA JPL). 

На рис. 1 представлены построенные нами 
зависимости A2(P) и  A2(γ) для астероидов Апо-
фис, 2012 TC4 и Дуэнде. В случае Апофиса схо-
жие зависимости для величины da/dt представ-
лены в  работе (Лобанова, Мельников, 2023). 
Величина A2 определялась по  формулам, при-
веденным в  предыдущем разделе. Значения 
параметров α, ε, C и  K, входящих в  уравнения 
(2) и  (4), плотности и  диаметра для Апофиса 
брались из  (Vokrouhlický и др., 2015b). Для 2012 
ТС4 и Дуэнде использовались средние для АСЗ 
значения указанных параметров, приведенные 
в (Fenucci и др., 2024). Для 2012 ТС4 плотность 
и  диаметр взяты из  (Lee и  др., 2021). Величина 
плотности для Дуэнде взята из (Devyatkin и др., 
2016) в  предположении, что астероид принад-
лежит спектральному классу L, а  диаметр взят 
из (Moskovitz и др., 2020). Значения орбитально-
го периода и большой полуоси для всех астерои-
дов получены из NASA JPL.

Как видно из рис. 1б, для Апофиса величине 
A2, определенной на основе наблюдательных дан-
ных и представленной на сайте NASA JPL, соот-
ветствует значение γ ≈ 140°. Указанное значение γ 
попадает в интервал между точечными оценками, 
приведенными в табл. 2. Из-за большой неопре-
деленности знания ориентации вектора кинети-
ческого момента мы далее полагали для Апофиса 
γ = 140°. В  случае астероида 2012 TC4 принятая 
для него величина A2 = –26.8 × 10–14 а. е./сут.2 
соответствует, согласно рис. 1г, γ = 105°. Для зна-
чения γ = 160°, определенного (Lee и  др., 2021) 
на  основе фотометрических наблюдений 2012 
TC4, из рис. 1в следует A2 = –70 × 10–14 а. е./сут.2. 
Из-за такого существенного отличия оценок 
γ далее мы  рассматривали для астероида 2012 
TC4 оба возможных варианта. Для Дуэнде, судя 
по  всему, нет астрометрических оценок A2. Од-
нако в (Benson и др., 2020) построены две моде-
ли вращения Дуэнде при его сближении с Землей 
в 2013 г., на основе которых мы определили γ = 27° 
и  γ = 160°. Теоретические зависимости A2(P) 
и A2(γ) для Дуэнде приведены на рис. 1. В первом 
случае для Дуэнде имеем A2 = 23 × 10–14 а. е./сут.2, 
во втором – A2 = –24 × 10–14 а. е./сут.2. Перейдем 
к  оценкам величин возмущений во  вращатель-
ной динамике астероидов при их сближениях 
с Землей.

ОЦЕНКА ВОЗМУЩЕНИЙ 
ВО ВРАЩАТЕЛЬНОЙ ДИНАМИКЕ

Для всех исследуемых астероидов на множе-
стве (P0, γ0) возможных начальных (до сближе-
ния) значений P и γ были определены величины: 
ΔP = Pfin – P0 и Δγ = γfin – γ0, где нижний индекс 
“fin” соответствует величинам после момента 
сближения (при удалении астероида от геоцентра 
на расстояние 100 RE). Значения P0 и γ0 задавались 
на  равномерной сетке, определенной следую-
щим образом: 1) для Апофиса 15 мин. ≤ P0 ≤ 70 ч 
с  шагом в  15 мин., 0° ≤ γ0 ≤180° с  шагом в  0.5°; 
2)  для 2012 TC4 15 с  ≤ P0 ≤ 60 мин. с  шагом 
в 15 с, 0° ≤ γ0 ≤180° с шагом в 1.0°; 3) для Дуэнде 
1 мин. ≤ P0 ≤ 20 ч с шагом в 1 мин., 0° ≤ γ0 ≤180° 
с шагом в 1.0°.

На рис. 2–4 представлены найденные из-
менения периода и  ориентации оси вращения 
Апофиса, 2012 TC4 и  Дуэнде из-за их сближе-
ний с  Землей. Диаграммы для случая сближе-
ния Апофиса с Землей в 2029 г. были получены 
ранее в  работах (Лобанова, Мельников, 2023; 
Lobanova, Melnikov, 2024). Для Дуэнде зависи-
мость ΔP(P0, γ0) была построена в  (Мельников, 
2022). В  настоящей работе все диаграммы по-
строены с существенно более высоким разреше-
нием и для орбит, основанных на современных 
данных с  сайта NASA JPL. На всех диаграммах 
в  соответствии с  табл. 1 указаны положения 
астероидов. Для всех астероидов на диаграммах 
присутствуют чередующиеся при изменении P0 
области, где происходит замедление (ΔP > 0), 
либо ускорение (ΔP < 0) вращения астероида 
и  имеют место изменения γ. Обсуждение вы-
явленных на  диаграммах деталей проводилось 
в  (Lobanova, Melnikov, 2024), где указано, что 
положения локальных максимумов и  миниму-
мов значений ΔP и Δγ определяются параметра-
ми орбиты, инерционные параметры астероида 
определяют амплитуду экстремальных значений 
возмущений. 

Согласно (Лобанова, Мельников, 2023; 
Lobanova, Melnikov, 2024), период вращения 
Апофиса из-за сближения в  2029 г. может как 
уменьшиться на 20 ч, так и увеличиться на 40 ч 
относительно текущей величины P = 30.6 ч. 
Наиболее вероятным является изменение P 
на 10–15 ч, что согласуется с результатами, по-
лученными в (Scheeres и др., 2000; 2004; Boldrin 
и  др., 2020; Мельников, 2022) путем модели-
рования сближений различных астероидов 
с планетами. Представленные на рис. 2 резуль-
таты моделирования вращательной динамики 
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Рис. 1. Зависимость величины A2 от периода вращения P и угла наклона оси вращения γ: (а) – для Апофиса при 
γ = 140°; (б) – для Апофиса при P = 30.6 ч; (в) – для астероида 2012 TC4 при γ = 105° и 160°; (г) – для астерои-
да 2012 TC4 при P = 12.25 мин; (д) – для Дуэнде при γ = 27° и 160°; (е) – для Дуэнде при P = 8.724 ч. Штриховые 
вертикальные линии (панели (а), (в) и (д)) соответствуют данным (Pravec и др., 2014; Lee и др., 2021; Benson и др., 
2020), на панели (е) – принятым значениям γ для Дуэнде. Штриховые горизонтальные линии на панелях (б) и (г) 
соответствуют величинам A2, указанным на сайте NASA JPL.
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Апофиса для других значений параметров ор-
биты и с большим разрешением по начальным 
данным согласуются с  указанными выводами. 
Отметим, что изменение параметров орбиты 
(величины e) привело к  уменьшению макси-
мальной величины ΔP до  35 ч. Амплитуда Δγ 
возмущений в  ориентации оси вращения Апо-
фиса, согласно рис. 2, может достигать десяти 
градусов. Указанная оценка согласуется с  ре-
зультатами, полученными в (Souchay и др., 2014; 
2018; Лобанова, Мельников, 2023). В ряде случа-
ев (при значениях γ0, близких к 90°) наблюдается 
переход от проградного вращения к ретроград-
ному и  наоборот. Отметим, что такой переход 
приводит к смене знака величины суточного ЭЯ 
и  суммарной величины ЭЯ, поскольку сезон-
ная компонента ЭЯ всегда отрицательна и мала 
по сравнению с суточной.

В случае астероида 2012 TC4 при его сбли-
жении с Землей в 2017 г., согласно рис. 3, воз-
мущения во  вращательном движении были 
весьма малы: |ΔP | < 10–5 мин., |Δγ | < 0.01°. Та-
ким образом, тесное сближение с Землей прак-
тически не  оказало влияния на  вращательную 
динамику астероида. В работе (Lee и др., 2021) 
указано, что периоды вращения 2012 TC4, опре-
деленные во время сближений в 2012 г. и 2017 г., 
отличались почти на 0.04 мин. Ускорение вра-
щения астероида могло быть вызвано действи-
ем YORP-эффекта (см. обсуждение там же). 
Отметим, что, хотя возмущения во  вращении 

2012 TC4 из-за сближений с Землей невелики, 
их необходимо учитывать, поскольку они мо-
гут повлиять на корректную оценку величины 
YORP-эффекта.

Помимо 2012 TC4 мы  также исследовали 
динамику астероида 2023 BU, имеющего схо-
жие размеры, при его рекордно тесном (рас-
стояние от  геоцентра около 9900 км) сбли-
жении с  Землей в  2023 г. (Мартюшева и  др., 
2023). Вращение 2023 BU является еще более 
быстрым (P < 2 мин.), чем у 2012 TC4. Харак-
тер полученных для 2023 BU диаграмм мало 
отличается от приведенных на рис. 3 для 2012 
TC4. Величины возмущений во вращательной 
динамике 2023 BU имели тот же порядок, что 
и для 2012 TC4, и это, вероятно, типично для 
таких объектов.

Согласно нашим численным эксперимен-
там (см. рис. 4), возмущения в  случае сбли-
жения Дуэнде с Землей в 2013 г. должны были 
быть довольно заметными. Для значений, ука-
занных в  табл. 1, имеем: при прямом враще-
нии Дуэнде ΔP ≈ 4.2 ч, Δγ ≈ 4.2°, при обрат-
ном – ΔP ≈ 0.1 ч, Δγ ≈ –1.1°. Следует обратить 
внимание на существенную разницу в величи-
не ΔP для разных ориентаций оси вращения 
и  большую амплитуду возможных вариаций 
γ, существенно превышающую значения Δγ, 
полученные для случая Апофиса (см. рис. 2б). 
В работе (Devyatkin и др., 2016) на основе мо-
делирования кривых блеска и  вращательной 
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Рис. 2. Изменение вращательного состояния Апофиса из-за сближения с Землей в 2029 г. в зависимости от P0 и γ0: 
(а) – изменение ΔP периода вращения; (б) – изменение Δγ угла, характеризующего отклонение оси вращения Апо-
фиса от нормали к плоскости орбиты. Крестиком указано положение Апофиса согласно данным из табл. 1.
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динамики Дуэнде сделан вывод об увеличении 
его периода вращения из-за сближения с Зем-
лей более чем на 1 ч. В работах (Benson и др., 
2020; Moskovitz и  др., 2020) анализ наблюда-
тельных данных, полученных непосредственно 
после сближения, выявил изменение периода 

Дуэнде почти на  0.4 ч. Численные экспери-
менты (Мельников, 2022) по  моделированию 
вращательной динамики Дуэнде показали, что 
ΔP < 2.4 ч. Во всех указанных работах выявле-
но заметное изменение вращения Дуэнде из-за 
сближения.
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Рис. 3. Изменение вращательного состояния астероида 2012 TC4 из-за сближения с Землей в 2017 г. в зависимости 
от P0 и γ0: (а) – изменение ΔP периода вращения; (б) – изменение Δγ угла, характеризующего отклонение оси вра-
щения астероида от нормали к плоскости орбиты. Треугольниками указаны возможные положения астероида 2012 
TC4 согласно данным из табл. 1.

Рис. 4. Изменение вращательного состояния астероида Дуэнде из-за сближения с Землей в 2013 г. в зависимости 
от P0 и γ0: (а) – изменение ΔP периода вращения; (б) – изменение Δγ угла, характеризующего отклонение оси вра-
щения астероида от нормали к плоскости орбиты. Треугольниками указаны возможные положения Дуэнде соглас-
но данным из табл. 1.
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ВЛИЯНИЕ ПАРАМЕТРОВ ФИГУРЫ 
АСТЕРОИДА НА ΔP И Δγ

Фигуры астероидов обычно известны с боль-
шими погрешностями, а  для малых астероидов 
часто имеются лишь оценки диаметра, получен-
ные на  основе абсолютной звездной величины 
астероида при определенных упрощениях. Для 
Апофиса и 2012 TC4 имеются радарные наблю-
дения и  построены аппроксимации их фигур 
(см., Pravec и др., 2014; Lee и др., 2021). Для Ду-
энде имеются только оценки параметров фи-
гуры (Devyatkin и  др., 2016; Benson и  др., 2020; 
Moskovitz и др., 2020). Моменты инерции (зна-
чения A/C и  B/C), знание которых необходимо 
для точного моделирования гравитационного 
взаимодействия астероида и  планеты при тес-
ном сближении, обычно определяются на осно-
ве построенных моделей фигур в  предположе-
нии однородной плотности астероида. Поэтому 
погрешность в  оценке A/C и  B/C может быть 
существенной. Мы изучили влияние фигуры 
астероида, предполагая ее трехосным эллипсо-
идом с полуосями a > b > c, на оценки ΔP и Δγ. 
А именно для всех исследуемых астероидов были 
построены и  проанализированы диаграммы 
ΔP(c/b, b/a) и Δγ(c/b, b/a) для значений 0 < c/b, 
b/a ≤ 1 и величин P и γ, указанных в табл. 1.

Для случая трехосного эллипсоида однород-
ной плотности имеем следующее соотношение 
между его полуосями и моментами инерции (Ку-
приянов, Шевченко, 2006):

	 c
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Варьируя отношения c/b и  b/a от  0 до  1, 
мы  рассмотрим все возможные значения A/C 
и B/C.

На рис. 5 и  6 представлены диаграммы 
ΔP(c/b, b/a) и  Δγ(c/b, b/a), построенные для 
Апофиса, 2012 TC4 и Дуэнде. Видно, что в слу-
чае Апофиса неопределенности в  знании ве-
личин моментов инерции могут приводить 
к  погрешностям в  оценке ΔP, составляющим 
несколько часов. Отметим, что на  диаграмме 
ΔP(c/b, b/a) нет явных максимумов и  миниму-
мов, а на диаграмме для Δγ они явно выражены. 
Погрешность оценки Δγ при численном моде-
лировании сближения Апофиса с Землей, если 
его реальные моменты инерции заметно отли-
чаются от  определенных в  (Pravec и  др., 2014), 
может составлять десятки градусов. Например, 
при c/b = 0.5, b/a = 0.2, согласно рис. 5, имеем 
Δγ ≈ –25°, в  то время как данным Pravec и  др. 

(2014) соответствует Δγ ≈ –5°. Стоит ожидать, 
что поведение, аналогичное представленному 
на  рис. 5, присуще и  другим астероидам с  от-
носительно медленным вращением (период 
P > 5 ч), что подтверждают диаграммы для Ду-
энде, приведенные на  рис. 6. Особо стоит от-
метить, что возмущения для Дуэнде велики при 
прямом вращении (γ0 = 27°)  – ΔP достигает 
12 ч, –15° < Δγ < 20°  – и  заметно меньше при 
обратном вращении (γ0 = 160°)  – ΔP < 0.15 ч, 
–2° < Δγ < 4°. Схожий вывод был сделан нами 
ранее при анализе диаграмм ΔP(P0, γ0) и Δγ(P0, γ0) 
для Дуэнде, представленных на рис. 4.

Для астероидов с быстрым вращением, при-
мером которых является 2012 TC4, неопределен-
ность в знании фигуры астероида не оказывает 
существенного влияния на оценки величин воз-
мущений, возникающих во вращательной дина-
мике. Согласно рис. 5, в случае 2012 TC4 допу-
стимым (из-за погрешностей их определения) 
вариациям c/b и b/a соответствуют |ΔP | < 10–7 мин 
и  | Δγ | < 0.001°. Указанные величины являются 
пренебрежимо малыми по  сравнению с  перио-
дом вращения астероида P = 12.25 мин. и  воз-
мущениями во вращении, возникающими в ходе 
сближения с  Землей (см. рис. 3). В  случае 2012 
TC4 приведены диаграммы только для γ0 = 160°, 
поскольку диаграммы, построенные в  случае 
γ0 = 105°, имеют схожий характер, а  амплитуда 
возмущений имеет тот же порядок. Отметим, 
что на полученных нами диаграммах ΔP(c/b, b/a) 
и Δγ(c/b, b/a) для схожего с 2012 TC4 астероида 
2023 BU, которые здесь не приводятся, амплиту-
да возмущений была также весьма мала.

ВЛИЯНИЕ СБЛИЖЕНИЯ С ЗЕМЛЕЙ 
НА ВЕЛИЧИНУ ЭФФЕКТА ЯРКОВСКОГО

Как отмечалось ранее, возмущения, возни-
кающие во вращательном движении астероидов 
из-за сближения с  Землей, должны оказывать 
влияние на  величину ЭЯ. Оценим изменение 
параметра A2 для исследуемых астероидов. Для 
этого посредством вычисления теоретической 
величины ЭЯ при помощи уравнений (2) и  (8) 
были построены (см. рис. 7) диаграммы A2(P, 
γ); на них, согласно табл. 1, указаны положения 
астероидов. Анализ диаграмм показывает, что 
на  величину A2 существенным образом влияет 
изменение наклона оси вращения. Возмущения 
периода в  случае Апофиса и  Дуэнде, даже если 
они велики (составляют несколько часов), прак-
тически не влияют на величину ЭЯ. Напротив, 
в случае быстрого вращения, что имеет место для 
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2012 TC4, даже небольшие возмущения P могут 
приводить к заметным изменениям A2. Однако, 
как показано нами выше, для астероидов с бы-
стрым вращением возмущения из-за сближения 
с Землей весьма малы.

Возмущения из-за сближения Апофиса 
с  Землей в  2029 г., которым соответствует (Ло-
банова, Мельников, 2023; Lobanova, Melnikov, 
2024) ΔP = 10–15 ч, приведут к  изменениям A2 

на несколько процентов (см. также (Benson и др., 
2023)). Если предположить (см. рис. 2б), что 
|Δγ | = 10°, то  изменения современной величи-
ны A2 = –2.9 × 10–14 а. е./сут.2 будут существен-
ны: согласно рис. 7а, может произойти либо ее 
уменьшение до –2.4 × 10–14 а. е./сут.2, либо уве-
личение до –3.2 × 10–14 а. е./сут.2. Поскольку воз-
мущения во  вращательной динамике астероида 
2012 TC4 при его сближении с  Землей в  2017 г. 

Рис. 5. Изменение вращательного состояния астероида в зависимости от параметров c/b и b/a, характеризующих 
фигуру астероида: (а) – изменение ΔP периода вращения и (б) – Δγ угла, характеризующего отклонение оси вра-
щения астероида от нормали к плоскости орбиты Апофиса из-за сближения с Землей в 2029 г.; (в) – изменение ΔP 
и (г) – Δγ для астероида 2012 TC4 из-за сближения с Землей в 2017 г. Принятые параметры орбиты (e, d) и начальные 
параметры вращения астероидов (P0, γ0) приведены на рисунках. Крестиком указаны положения астероидов соглас-
но (Pravec и др., 2014; Lee и др., 2021).

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

−6

−5

−4

−3

−2

−1

0

1.00.90.80.70.60.5

(a)

0.40.30.20.10

b/
a

c/b

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

−20

−15

−10

−5

0

5

10

1.00.90.80.70.60.5

(б)

0.40.30.20.10

b/
a

c/b

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

−5.0 × 10−8

−1.0 × 10−7

−1.5 × 10−7

0

5.0 × 10−4

7.5 × 10−4

2.5 × 10−4

−2.5 × 10−4

−5.0 × 10−4

0

1.00.90.80.70.60.5

(в)

0.40.30.20.10

b/
a

c/b
1.00.90.80.70.60.5

(г)

0.40.30.20.10

b/
a

c/b

(e = 4.26, d = 5.96RE, P0 = 30.6 ч, γ0 = 140 град)

∆P, ч
(e = 4.26, d = 5.96RE, P0 = 30.6 ч, γ0 = 140 град)

∆γ, град

(e = 6.36, d = 7.86RE, P0 = 12.25 мин, γ0 = 160 град)

∆P, мин
(e = 6.36, d = 7.86RE, P0 = 12.25 мин, γ0 = 160 град)

∆γ, град



АСТРОНОМИЧЕСКИЙ ВЕСТНИК  том 59  № 1  2025

68	 ЛОБАНОВА, МЕЛЬНИКОВ

весьма малы (см. выше), то они не оказали вли-
яния на величину параметра A2. Для Дуэнде, как 
следует из  рис. 4, существенные возмущения 
вращения в 2013 г. имели бы место лишь при его 
прямом вращении (γ0 = 27°), но  поскольку они 
преобладали в  скорости вращения (ΔP ≈ 4.2 ч), 
а не в γ (Δγ ≈ 4.2°), они также не сказались на ве-
личине A2.

ВЫВОДЫ

В настоящей работе путем численных экспе-
риментов изучено влияние скорости собствен-
ного вращения и параметров фигуры астероида 
на  величину возмущений в  его вращательной 
динамике, возникающих при тесном сближении 
с  Землей, и  влияние возмущений на  величину 

Рис. 6. Изменение вращательного состояния астероида Дуэнде из-за сближения с Землей в 2013 г. в зависимости 
от параметров c/b и b/a, характеризующих фигуру астероида: (а) – изменение ΔP периода вращения при γ0 = 27°; 
(б) – изменение Δγ угла, характеризующего отклонение оси вращения астероида от нормали к плоскости орбиты, 
при γ0 = 27°; (в) – изменение ΔP при γ0 = 160°; (г) – изменение Δγ при γ0 = 160°. Принятые параметры орбиты (e, d) 
и начальные параметры вращения астероида (P0, γ0) приведены на рисунках. Крестиком указано возможное поло-
жение Дуэнде (см. Мельников, 2022).
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эффекта Ярковского. Для этого рассмотрена 
динамика астероидов (99942) Апофис, (367943) 
Дуэнде и  2012 TC4, обладающих как разными 
размерами (диаметры D = 10–340 м), так и  за-
метно отличающимися периодами вращения 
(P = 12 мин. – 30 ч).

Установлено, что в случае Апофиса (P ≈ 30 ч) 
при сближении с  Землей в  2029 г. изменения 
периода вращения ΔP могут достигать десятков 
часов, а отклонения Δγ в ориентации оси враще-
ния – десяти градусов. Схожие результаты были 
получены нами ранее (Лобанова, Мельников, 
2023; Lobanova, Melnikov, 2024) для других орби-
тальных параметров Апофиса. Для астероида Ду-
энде (P ≈ 8 ч) при сближении с Землей в 2013 г. 
величина ΔP не  превышала нескольких часов. 

Отклонения в ориентации оси вращения Дуэн-
де могли составить десятки градусов. Указанные 
выше значения ΔP и  Δγ, вероятно, характерны 
для астероидов с относительно медленным вра-
щением (P > 5 ч) при тесных (на расстояние в не-
сколько земных радиусов) сближениях с Землей, 
что согласуется с результатами других модельных 
численных экспериментов (Scheeres и др., 2000; 
2004; Boldrin и др., 2020; Мельников, 2022; Ло-
банова, Мельников, 2023; Lobanova, Melnikov, 
2024).

Для астероидов с  быстрым вращением 
(P < 1 ч) возмущения будут весьма малы (см. так-
же обсуждение в  (Lee и  др., 2021)). Например, 
в  случае астероида 2012 TC4 (P ≈ 12 мин.) при 
его сближении с  Землей в  2017 г. проведенные 
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Рис. 7. Зависимость величины A2 от P и γ: (а) – для Апофиса. Крестиком указано современное положение Апофиса; 
(б) – для астероида 2012 TC4; (в) – для Дуэнде. Треугольниками указаны возможные положения астероидов (см. 
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нами численные эксперименты показали: 
|ΔP | < 10–5 мин., |Δγ| < 0.01°. Аналогичные оцен-
ки получены и для астероида 2023 BU (D ~ 10 м, 
P < 2 мин.) при анализе его вращательной ди-
намики в  ходе весьма тесного (около 9900 км) 
сближения с Землей в 2023 г. Отметим, что асте-
роиды с быстрым вращением представляют со-
бой, очевидно, монолитные тела. Более крупные 
тела, а  также астероиды типа “rubble pile” раз-
рушаются при достижении критической отмет-
ки, соответствующей P ≈ 2.2 ч (см. подробнее 
(Pravec, Harris, 2000; Hu и др., 2021)).

Обычно, параметры фигур малых астероидов 
и, соответственно, моменты инерции неизвест-
ны или определены с существенной погрешно-
стью. Нами рассмотрено влияние неопределен-
ности знания моментов инерции на оценки ΔP 
и Δγ. Установлено, что в случае Апофиса неопре-
деленности в знании величин моментов инерции 
при численном моделировании его сближения 
с Землей в 2029 г. могут приводить к погрешно-
сти в оценке ΔP, достигающей нескольких часов, 
а в оценке Δγ – десятков градусов. Аналогичный 
вывод сделан нами для Дуэнде при моделирова-
нии его сближения с Землей в 2013 г. Стоит ожи-
дать, что существенное влияние погрешностей 
в знании моментов инерции на оценки ΔP и Δγ 
имеет место и  для других астероидов с  отно-
сительно медленным вращением (P > 5 ч). На-
против, для астероидов с  весьма быстрым вра-
щением, как показано нами в случае 2012 TC4, 
неопределенность в  знании моментов инерции 
не оказывает существенного влияния на оценки 
величин возмущений во вращательной динами-
ке, возникающих из-за сближения.

Рассмотрено влияние возмущений во враща-
тельном движении астероидов на  величину ЭЯ. 
Проведенный анализ теоретических зависимо-
стей параметра A2 от P и γ, построенных для всех 
исследуемых астероидов, показал, что возмуще-
ния периода в  случае Апофиса и  Дуэнде прак-
тически не  влияют на  величину ЭЯ, заметные 
изменения A2 могут произойти лишь при суще-
ственном изменении γ. Для астероидов с быстрым 
вращением, таких как 2012 TC4, возмущения как 
в скорости вращения, так и в ориентации оси вра-
щения заметно влияют на величину A2. В случае 
Апофиса из-за сближения с Землей в 2029 г. мо-
жет произойти как уменьшение, так и увеличение 
величины A2 в  пределах от  – 2.4 × 10–14 а. е./сут.2 
до –3.2 × 10–14 а. е./сут.2. Предполагаемое измене-
ние величины A2 окажет заметное влияние на эво-
люцию орбиты Апофиса после сближения. Для 
Дуэнде возмущения вращательного движения, 

имевшие место в  2013 г., вероятно, не  сказались 
на  величине A2. Поскольку возмущения во  вра-
щательной динамике астероида 2012 TC4 при его 
сближении с Землей в 2017 г. были весьма малы, 
они не оказали влияния на величину параметра A2.

Итак, на  основе численного моделирования 
динамики ряда астероидов мы  рассмотрели воз-
мущения в  их вращательном движении при тес-
ных сближениях с Землей и их влияние на величи-
ну ЭЯ. Посредством дополнительных численных 
экспериментов по  моделированию динамики 
различных АСЗ, обладающих медленным (P > 5 ч) 
и быстрым (P < 1 ч) вращением, можно обобщить 
полученные в  настоящей работе выводы на  ука-
занные два типа астероидов. А именно для астеро-
идов с медленным вращением характерны значи-
тельные возмущения во вращательном движении 
при тесном сближении с Землей, также при оцен-
ке величин возмущений следует учитывать не-
точность в  знании реальных значений моментов 
инерции астероида. Существенное влияние на ве-
личину ЭЯ для астероидов с медленным вращени-
ем оказывает изменение ориентации оси враще-
ния из-за сближения. Напротив, для астероидов, 
обладающих быстрым вращением, возмущения 
малы и их можно не учитывать при моделирова-
нии динамики астероида после сближения. Одна-
ко для быстровращающихся астероидов следует 
учитывать возможность существенного измене-
ния величины ЭЯ из-за возмущений иного рода, 
приводящих как к смещению оси вращения, так 
и к изменению скорости вращения астероида. Та-
кие изменения могут быть вызваны, например, 
внешним физическим воздействием на астероид 
(Bottke и др., 2020; Daly и др., 2023).

Авторы благодарны рецензенту за  ценные 
замечания. 
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