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В статье анализируются и развиваются отечественные инженерные разработки концепций созда-
ния лунных баз и транспортных средств для их строительства и функционирования. Предложена 
концепция интеллектуальных мобильных платформ (ИМП), представляющих собой унифици-
рованные самоходные шасси с  автоматическими стыковочно-сцепными устройствами (АССУ) 
и  подсистемами локальной навигации. На самоходное шасси ИМП устанавливается различное 
навесное оборудование, определяющее назначение и технологические характеристики транспорт-
ного средства (ТС). Такие ТС могут использоваться как самостоятельные луноходы с гибридным 
управлением, так и в качестве звеньев многофункционального лунного поезда, предназначенного 
для специальных операций, включая дальние экспедиции на сотни километров. На основе опубли-
кованных NASA изображений Lunar Reconnaissance Orbiter Camera проложен возможный маршрут 
экспедиции от  места размещения Международной научной лунной станции (МНЛС) в  районе 
массива Малаперт на обратную сторону Луны, учитывающий уровень освещенности и углы подъ-
ема местности на всей трассе движения. Цель экспедиции – проведение научных исследований 
по  трассе движения, доставка аппаратуры и  развертывание автоматического филиала МНЛС  – 
лунной обсерватории на обратной стороне Луны в тени от радиошумов Земли. На основе расчет-
но-теоретических исследований и  проектно-компоновочных разработок выполнен аванпроект, 
включающий технический облик ИМП и ее основные тактико-технические характеристики. 
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ВВЕДЕНИЕ

16 июня 2021 г. в Санкт-Петербурге во время 
проведения Global Space Exploration Conference 
(GLEX-2021) руководители Роскосмоса и  На-
циональной космической администрации Ки-
тая презентовали дорожную карту совместного 
проекта Международной научной лунной стан-
ции (МНЛС). 12 июня 2024 г. Президент РФ 

подписал Федеральный закон №128-ФЗ “О ра-
тификации Соглашения между Правительством 
Российской Федерации и  Правительством Ки-
тайской Народной Республики о  сотрудниче-
стве в области создания МНЛС”.

Цель статьи – разработка и анализ проектных 
концепций интеллектуальных мобильных плат-
форм (ИМП)  – унифицированных мобильных 
компонентов лунных роботов нового поколения 
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с  гибридным управлением, ориентированных 
на  поддержку работ по  созданию и  эксплуата-
ции МНЛС. Прототипами ИМП в  части само-
ходного шасси являются советские Луноход-1 
и -2, а также американские Lunar Roving Vehicle 
(LRV). Но ИМП, оснащенные различным навес-
ным и  встроенным оборудованием, в  представ-
лении авторов, должны иметь расширенные со-
став и выполняемые функции. Ведь на их основе 
предполагается создавать не только автономные 
роботы и пилотируемые машины для транспор-
тировки космонавтов, полезных грузов (ПГ), 
выполнения научных исследований и  (или) 
технологических операций, но  и  многозвен-
ные мобильные робототехнические комплексы 
(МРТК) – лунные поезда XXI века.

Автономные и пилотируемые луноходы, до-
ставляемые на  Луну в  полном сборе, готовы-
ми к  самостоятельному движению уже на  по-
садочной платформе космического аппарата 
(КА), необходимы на  самых ранних стадиях 
проектирования и  строительства МНЛС. Без 
них, в  частности, невозможно квалифициро-
ванное обследование перспективных районов 
Луны для выбора места строительства МНЛС 
и  уточнения строительной документации. На 
следующих этапах создания МНЛС они будут 
использованы для подготовки строительных 
площадок, строительства дорог, транспор-
тировки грузов между лунным космодромом 
и  местами строительства различных сооруже-
ний станции, а  также для непосредственного 
участия в  монтаже этих сооружений. По мере 
строительства МНЛС луноходы будут все шире 
использоваться для поддержки научных иссле-
дований, поиска воды и полезных ископаемых 
в окрестностях станции. 

Однако целый ряд задач строительства и эф-
фективной эксплуатации МНЛС с  помощью 
одиночных луноходов невозможны. В  частно-
сти, предварительные проектные разработки 
позволяют утверждать, что для транспортировки 
и  монтажа габаритных модулей МНЛС массой 
примерно около 20 т потребуются, как минимум, 
двухзвенные луноходы. Последующие освоение 
обширных территорий Луны, поддержка техно-
логий освоения лунных ресурсов, проведение 
исследований во  время длительных и  далеких 
(сотни километров) экспедиций практически 
невозможны без многозвенных МРТК. Ведь эти 
комплексы, по  существу, должны будут создать 
экипажам все условия для жизни, труда и отды-
ха, какие будут созданы на  МНЛС, но  с  мень-
шим уровнем комфорта.

АКТУАЛЬНЫЕ ОТЕЧЕСТВЕННЫЕ 
КОНЦЕПЦИИ ЛУННОЙ БАЗЫ И ЕЕ 

МОБИЛЬНЫХ КОМПОНЕНТОВ

В общих чертах концепция и проектный об-
лик долговременной лунной базы (ДЛБ), по по-
ручению начальника и  главного конструктора 
Опытно-конструкторского бюро-1 (ОКБ-1) 
С.П. Королева, впервые в СССР были прорабо-
таны на  инженерном уровне под руководством 
В.П. Бармина еще в  1960-х годах (Мержанов, 
2018) в  Государственном союзном конструк-
торском бюро Специального машиностроения 
(ГСКБ Спецмаш), которое затем было переиме-
новано в Конструкторское бюро общего маши-
ностроения (КБ ОМ), а ныне называется Центр 
эксплуатации объектов наземной космической 
инфраструктуры (ЦЭНКИ).

На наш взгляд, до  настоящего времени со-
храняют актуальность идеи строительства лун-
ной базы как совокупности цилиндрических 
герметичных модулей, соединенных между со-
бой герметичными переходами и  устанавлива-
емых на  предварительно выровненный лунный 
реголит. Ведь и  в то  время, и  сейчас габариты 
космических грузов определяются геометрией 
головного обтекателя ракеты. Авторы проекта 
предполагали использовать реголит только для 
невысокой обваловки цилиндров с целью фик-
сации модулей на строительной площадке. Про-
ект предусматривал как минимум две шлюзовые 
камеры для входа на  станцию и  выхода на  по-
верхность Луны. 

В части мобильной робототехники, на наш 
взгляд, до  настоящего времени актуальна, 
предложенная в проекте ДЛБ, концепция лун-
ных поездов, аналогичных санно-тракторным 
поездам, которые успешно использовались 
для строительства советских научных станций 
в суровых условиях Антарктиды. Лунные поез-
да, по представлениям разработчиков, должны 
были, как минимум, включать четыре звена: тя-
гач, жилой вагончик, энергоустановку и  буро-
вую станцию. 

Однако современные технологии и  опыт 
эксплуатации на  Луне советских многоколес-
ных полноприводных Лунохода-1 и -2 позволя-
ют создать лунный поезд, все звенья которого, 
выполняющие различные функции, будут ре-
ально равноценны по  своим тягово-динамиче-
ским характеристикам. Это будет не просто шаг 
вперед в  части таких оперативно-тактических 
характеристик лунного поезда, как проходи-
мость, надежность, ресурс, функциональные 
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возможности. Создание после трех полетов 
на Луну даже простейшего трехзвенного лунно-
го поезда, включающего пилотируемый луноход 
с  герметичной кабиной и  шлюзовой камерой, 
робототехнический луноход с бортовой электро-
станцией, включающей солнечные и изотопные 
источники энергии, а также еще один робот с за-
пасами компонентов жизнеобеспечения, позво-
ляет решить стратегическую задачу организации 
аварийного мобильного дублера стационарной 
МНЛС.

Авторы считают, что в последующих проек-
тно-компоновочных разработках можно ориен-
тироваться и на предложенные в прошлом веке 
габаритные размеры цилиндрических оболочек 
модулей МНЛС: длина ≈8 м, диаметр ≈4 м, мас-
са примерно 18 т. А  вот идея доставки на  Луну 
сжатых в  гармошку оболочек модулей с  после-
дующим их развертыванием на  полную длину 
в лунном вакууме за счет внутреннего давления 
газов в  современной космонавтике не  получи-
ла развития. Такой способ развертывания обя-
зывает производить монтаж всего служебно-
го и  научного оборудования непосредственно 
на  Луне. Но практика создания первой совет-
ской орбитальной станции МИР, Международ-
ной космической станции (МКС) и  китайской 
станции Тянгун как технологических аналогов 
лунных станций показала, что сборка и провер-
ки модулей МКС на  Земле, даже в  специально 
оборудованных для этого цехах, занимает годы. 
Планирование полного цикла подобных работ 
непосредственно на  месте эксплуатации моду-
лей – бесперспективно. Здесь неизбежны только 
различного рода стыковочные операции, авто-
номные и  комплексные проверки нового обо-
рудования в  составе орбитальной или лунной 
станции. 

В 1974 г. в  Центральном конструкторском 
бюро экспериментального машиностроения 
(ЦКБЭМ) – (так, с марта 1966 г. стало называть-
ся ОКБ-1, ныне  – Ракетно-космическая кор-
порация (РКК) “Энергия”), были разработаны 
Технические предложения по лунному экспеди-
ционному комплексу, который получил назва-
ние “Звезда” (Семенов и др., 1996). 

К этому времени в  СССР и  в США подво-
дили итоги завершавшихся пионерских лунных 
исследований. Огромный объем новой инфор-
мации о  поверхности Луны, об  особенностях 
взаимодействия с  ней самоходных шасси дис-
танционно управляемых луноходов (Анисимов 
и др., 1971; Кемурджиан и др., 1976; Иванов и др., 
1978; Авотин и др., 1979; Кемурджиан и др., 1982; 

Громов и др., 1986) и пилотируемого лунохода – 
Lunar Roving Vehicle (LRV) (Costes и  др., 1972; 
Young, 2007), полученный контактными метода-
ми, так или иначе отражался и отражается до сих 
пор на всех последующих отечественных и зару-
бежных проектных разработках лунной базы.

В частности, в упомянутом советском про-
ектном исследовании 1974 г. была сохранена 
идея тягача, который в документах ЦКБЭМ на-
зывается “Тяжелый луноход”. Проектный облик 
этого лунохода: жесткие колеса, колесная фор-
мула 8 × 8, рычажная подвеска колес c упругими 
элементами в виде торсионов, бортовой способ 
поворота – все это было в русле конструктор-
ских решений самоходного шасси Лунохода-1. 
Основные параметры: экипаж два космонавта, 
полная масса 8.2 т, в том числе масса энергоуста-
новки номинальной мощностью 8 кВт – 2.25 т, 
средняя скорость движения 5 км/ч, продолжи-
тельность одной экспедиции до 12 земных суток, 
объем гермоотсека 25 м³: габариты герметичной 
кабины: длина 8 м, ширина 4.5 м. Концепция 
лунных поездов не развивалась, но и не опро-
вергалась.

ВНИИ-100 (ныне ОАО “Всероссийский на-
учно-исследовательский институт транспорт-
ного машиностроения” (ВНИИТрансмаш)), 
где, под руководством А.Л. Кемурджиана, было 
создано самоходное шасси (СШ) Лунохода-1, 
в  1970-е годы был соисполнителем проектных 
исследований КБ ОМ по лунной базе в части мо-
бильной техники. Руководителем работ со  сто-
роны ВНИИ-100 был ближайший сподвижник 
А.Л. Кемурджиана – П.С. Сологуб, а куратором 
договора между предприятиями был сотрудник 
его отдела Е.В. Авотин.

Но полноразмерный действующий макет 
СШ двухсекционного пилотируемого лунохо-
да (рис. 1), который фактически стал первой 
реализацией в  металле замыслов авторов ДЛБ 
по  лунному поезду, был создан во  ВНИИ-100 
при участии авторов настоящей статьи в  конце 
1970-х годов в рамках формально еще не закры-
той советской лунной программы “Е-8” (Маров, 
Хантресс, 2013). Передняя секция макета была 
предназначена для установки кресел двух космо-
навтов, компонентов систем навигации, энерго-
питания и  управления движением. На второй 
секции можно было размещать навесное обору-
дование для выполнения научных исследований 
и  транспортировать полезные грузы  – лунный 
грунт, буровые механизмы и т.п. Секции макета 
самоходного шасси были полностью унифици-
рованы.
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В отличие от  СШ советских луноходов, 
в этом макете были реализованы три новых тех-
нических решения: сцепное устройство, сохра-
няющее три угловые степени свободы секций 
при движении на  сложном рельефе (Горбунов 
и  др., 1985); двухступенчатая автоматическая 
коробка перемены передач (КПП) с  электро-
магнитным управлением в  составе тягового 
привода мотор-колес (Корепанов и  др., 1972); 
и металлические колеса диаметром 0.8 м с про-
филированной упругой шиной, изготовленной 
из  стальной проволочной сетки (Митин и  др., 
1981). Максимальная скорость движения ма-
кета на  неподготовленной местности с  угла-
ми подъема не  более 5°–7° составила 4.8 км/ч 
(Громов и др., 1986).

Применение КПП, конструкция которой 
приведена на  рис. 2, позволило регулировать 
не  только скорость движения, но  и  крутящий 
момент на  колесах, а  следовательно, и  тяговое 
усилие в контакте колес с грунтом. Схема коле-
са этого макета приведена на рис. 3. Сочетание 
жесткого обода с достаточно высокими грунто-
зацепами и  профилированной металлической 
сетчатой шины, закрепленной на этом жестком 
ободе, позволили расширить диапазон регули-
рования скорости движений. На крутых подъ-
емах, например, при выезде из кратеров, КПП 
работает на первой передаче, обеспечивая номи-
нальную скорость движения около 1 км/ч с мак-
симальным крутящим моментом. При этом сет-
чатые шины кормовых, наиболее нагруженных 

колес в  процессе их упругой деформации под 
большой нагрузкой позволяют вступить в рабо-
ту грунтозацепам, которые способны реализо-
вать максимальные тяговые усилия. 

На сравнительно ровной поверхности 
с  углами подъема до  5°–7°, например, меж-
ду кратерами, где лунный реголит имеет более 
высокую несущую способность, эффектив-
но работают сетчатые шины, обеспечивая при 
движении достаточные пятна контактов с  по-
верхностью и  повышая плавность движения 
на максимальной скорости. 

Технические решения, использованные 
в  этом макете, частично сохранили актуаль-
ность и  являются научно-техническим заде-
лом школы А.Л. Кемурджиана, прототипом для 
проектирования СШ нового поколения. Кар-
динально нужно переделывать только сцепное 
устройство, конструкция которого не  обеспе-
чивает возможность автоматической стыковки 
секций. В то время такая задача еще не стави-
лась. Так что проектирование надежных авто-
матических стыковочно-сцепных устройств 
(АССУ) с  минимальной массой является со-
вершенно новой, наиболее сложной конструк-
торской задачей создания ИМП. Большой со-
ветский опыт создания стыковочных устройств 
космических аппаратов (Сыромятников, 1984) 
здесь может быть применим только частично, 
в  силу больших различий законов движения 
в космическом пространстве и на поверхности 
небесных тел.

Рис. 1. Ходовой макет двухсекционного самоходного шасси пилотируемого лунохода (из архива автора).
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Отдельные аспекты концепции ИМП были 
доложены авторами на  международных про-
фильных конференциях (Маленков, 2017; 2023; 
Malenkov, 2019; 2022).

ОБСУЖДЕНИЕ ЗАДАЧ МОБИЛЬНОЙ 
РОБОТОТЕХНИКИ В ПЕРСПЕКТИВНЫХ 

РАЙОНАХ СТРОИТЕЛЬСТВА МНЛС

Общие подходы к теме

Независимо от  конкретных обстоятельств 
и  времени реализации, все сценарии создания 
и  эксплуатации МНЛС неизбежно будут вклю-
чать этап предварительного обследования места 
посадки космических аппаратов (лунный кос-
модром), места строительства других сооруже-
ний МНЛС, этап подготовки указанных пло-
щадок и  трассы, связывающей этот космодром 
с местом строительства, этапы доставки на Луну 
габаритных модулей станции, ее строительства 
и  развертывания научного оборудования, а  так-
же этапы подготовки и  реализации длительных 
лунных экспедиций для практического освоения 
ее поверхности и  недр. Оптимальные варианты 

проектирования новой мобильной лунной техни-
ки должны, по возможности, учитывать потреб-
ности и особенности всех перечисленных этапов.

В случае хорошо организованного предвари-
тельного изучения выбранного района с  помо-
щью аппаратуры лунного орбитального корабля 
для выполнения этапа обследования может быть 
достаточно одного-двух луноходов на  базе уни-
фицированных ИМП. Оптимальным представ-
ляется тандем пилотируемого и автономно-авто-
матического луноходов. Бортовые пенетрометры 
робота и его навигационные приборы уточняют 
несущую способность грунта и параметры релье-
фа местности по  всей трассе космодром–стан-
ция. С  помощью пилотируемого лунохода кос-
монавты в  пределах лунного дня могут сделать 
выборочную проверку результатов исследований 
робота и  уделить основное внимание выбору 
мест размещения сооружений МНЛС.

В части общих подходов к проектированию, 
прототипом лунного робота вполне может быть 
Луноход-1, а  прототипом пилотируемого луно-
хода – Lunar Roving Vehicle (LRV). Наличие двух 
луноходов с приборами и оборудованием для ин-
женерного обследования, на базе единой ИМП 
позволит параллельно проверить и  отработать 

Рис. 2. Двухступенчатая автоматическая коробка 
перемены передач. 1  – пружина КПП, 2  – элек-
тромагнит 1-й передачи, 3  – водило, 4  – тормоз-
ной диск 1-й передачи, 5 – пружина 2-й передачи, 
6 – барабан, 7 – эпицикл, 8 – корпус, 9 – солнеч-
ная шестерня, 10 – диск на валу двигателя, 11 – диск 
тормоза колеса, 12 – электромагнит тормоза колеса, 
13 – двигатель, 14 – пружина тормоза колеса.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Рис. 3. Схема колеса с  упругой профилированной 
металлической сетчатой шиной двухсекционного 
макета: 1 – ступица, 2 – спицы, 3 – правый обруч 
обода колеса, 4  – упругая металлическая сетчатая 
шина, 5  – упругие металлические пластины, 6  – 
бандаж, 7 – грунтозацепы.
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в  натурных условиях конструкцию самоходно-
го шасси, а также конструкцию и программное 
обеспечение АССУ.

Предварительные расчеты показывают, что 
посадку КА с  модулями лунной базы массой 
не  более 18 т необходимо производить на  пред-
варительно выровненную в  горизонт площадку 
с упрочненным лунным реголитом. Это повыша-
ет уровень надежности и безопасности от опро-
кидывания, а  также облегчает условия работы 
устройств кантования и разгрузки этих модулей. 

Габариты площадки зависят от  точности 
посадки лунного КА. Для примера, 19 января 
2024 г. японский КА Smart Lander for Investigat-
ing Moon (SLIM) совершил очень точную, но не 
совсем удачную посадку на  склоне небольшого 
кратера. Согласно сообщениям в средствах мас-
совой информации, посадочный аппарат лег 
на бок на удалении всего 55 м от заданной точки. 

Достижение высокой точности и безопасности 
посадки является одной из главных задач полетов 
российских и  китайских КА, которые впослед-
ствии будут доставлять на  Луну изготовленные 
на Земле и готовые к монтажу модули МНЛС. 

После успешной посадки КА на  площадке 
космодрома открывается возможность разгрузки 
габаритных модулей станции с посадочной плат-
формы КА на специальное лунное транспортное 
средство, представляющее собой, по  предвари-
тельной оценке, сцепку из  двух ИМП с  общей 
грузовой платформой. Затем происходит транс-
портировка этих модулей по  подготовленной 
трассе к месту строительства и монтаж – соеди-
нение модулей в  соответствии с  заданной кон-
фигурацией станции. 

Прокладка специальных трасс необходима 
для надежной и безопасной перевозки тяжелых 
модулей МНЛС от места разгрузки на космодро-
ме до места монтажа с минимально возможны-
ми энергозатратами. Дорожные работы ИМП 
со специальным навесным оборудованием на та-
кой трассе могут включать следующие работы:

– �выравнивание поверхности путем засыпки 
ям, трещин и небольших кратеров и среза-
ния бугров и локальных холмов; 

– �упрочнение грунта на  трассе до  несущей 
способности, обеспечивающей снижение 
коэффициента сопротивления движению 
колесного ИМП;

– �прокладка поворотов трассы с учетом огра-
ничений, обусловленных конструкцией 
транспортных средств (ТС), которые бу-
дут использованы для перевозки модулей 
МНЛС.

Современный уровень знаний о  лунном 
грунте как об опорной поверхности для движе-
ния ТС позволяет обеспечить возможность ре-
шения перечисленных задач. Авторами также 
разработаны оригинальные способы и  устрой-
ства для разгрузки крупногабаритных модулей 
МНЛС большой массы. Однако эти вопросы 
выходят за рамки настоящей статьи.

Обоснование выбора возможного района 
строительства МНЛС

В настоящее время наибольший интерес для 
создания лунных станций вызывают южные 
полярные области Луны. В  этих областях обе-
спечивается более продолжительная солнечная 
освещенность, но, так как Cолнце достаточно 
низкое, то температуры поверхности не столь за-
висят от  времени лунных суток, как, например, 
в  экваториальной области. В  полярной области 
видимой части Луны возможна прямая радиос-
вязь с Землей, что важно для создания постоян-
ного информационного канала Земля–МНЛС. 
Но наиболее важный фактор полярных областей 
Луны – это наличие запасов водяного льда в ре-
голите, в глубоких кратерах, в зонах постоянной 
тени. Вода необходима для жизнеобеспечения 
экипажа МНЛС, а также может служить источни-
ком получения компонентов ракетного топлива.

Сценарием применения ИМП в данном ис-
следовании выбран горный массив Малаперт 
(Basilevsky, 2019), расположенный недалеко 
от южного полюса Луны. Его координаты при-
мерно 86° южной широты и 0° восточной долго-
ты. Вершина горы возвышается на 5 км от осно-
вания и имеет постоянную видимость с Земли, 
а значит, имеется возможность прямой радиос-
вязи. Солнечная освещенность на  вершине со-
ставляет от  87 до  91% в  течение лунных суток, 
что дает возможность максимально удлинить 
время производства солнечной энергии. Мож-
но отметить, что эта область входит и  в число 
13 предпочтительных мест размещения лунной 
базы, выбранных NASA по рекомендациям уче-
ных и специалистов.

На рис. 4 (слева) приведена фотография южно-
го полюса Луны. Направление на Землю находит-
ся перпендикулярно к верхней части фотографии. 
К югу от горы Малаперт расположены 51-киломе-
тровый кратер Хауорт и 52-километровый кратер 
Шумейкер, дно которых находится в постоянной 
тени, а  нейтронно-спектрометрические орби-
тальные измерения свидетельствуют о значитель-
ном содержании в реголите водяного льда. 
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Топография массива Малаперт и ее произво-
дные были изучены с использованием изображе-
ний, полученных с  Lunar Reconnaissance Orbiter 
Camera (LROC). Согласно исследованиям, массив 
Малаперт представляет собой гору, в  основном, 
с  достаточно крутыми склонами (до 20°–30°), 
протяженностью примерно 30–50 км, вытянутую 
в северо-западном направлении и имеющую се-
верное расширение. Однако по  наиболее поло-
гому северо-западному склону генеральный угол 
подъема, измеренный на базе несколько киломе-
тров, практически на всей длине склона не пре-
вышают 12° (рис. 4 справа). Углы наклона поверх-
ности на базе шасси используемых транспортных 
средств могут быть и больше, и меньше значений, 
показанных на рис. 4, и их измерение это предмет 
специального исследования. Цифровые моде-
ли поверхности по данным LROC обеспечивают 
возможность такого исследования. Превышение 
угла подъема более 12° носит локальный характер 
и, следовательно, может быть устранено с помо-
щью дорожно-строительного навесного оборудо-
вания ИМП при прокладке трассы.

Поэтому при создании МНЛС можно рассма-
тривать возможность размещения космодрома 
(участок взлета и посадки) на сравнительно ров-
ных площадках у  подножия горы, а  солнечной 
электростанции – на вершине горы. Комплекс ее 
жилых, научных и иных, связанных между собой 

модулей (база) может быть размещен между эти-
ми двумя точками, на  выровненной в  горизонт 
площадке полого склона. В  этом случае опти-
мальным вариантом для организации транспорт-
ного сообщения между космодромом и другими 
сооружениями лунной станции является трасса 
по пологому склону горы. Протяженность трас-
сы может составить до  40 км, но  длина участка 
космодром–база, по которому будут перевозить-
ся наиболее проблемные модули массой 18000 кг, 
может быть существенно короче.

Концепция использования ИМП в составе лунных 
поездов для длительных экспедиций

По мере строительства МНЛС, расширения 
научных и  технологических функций, включая 
создание линии высокоскоростной связи с Зем-
лей, сети мобильной связи, объектов для произ-
водства электрической и тепловой энергии, ком-
понентов жизнеобеспечения и  т.п., возникнет 
необходимость в создании пунктов автоматиче-
ского мониторинга этих объектов и  окружаю-
щей среды на некотором расстоянии от станции. 
Со временем станут возможными и  необходи-
мыми удаленные пункты проведения отдельных 
исследований, которые можно назвать автома-
тическими филиалами МНЛС, работающими 
в режиме посещения.

Рис. 4. Фото Южного полюса Луны с борта Lunar Reconnaissance Orbiter Camera и карта Malapert Mons с предпо-
ложительными районами расположения лунного космодрома МНЛС у подножья (участок посадки/взлета) и эле-
ментов лунной базы на  вершине (солнечная электростанция). Цифры по  вертикальной и  горизонтальной осям 
на карте – расстояния в метрах. Цифры между горизонталями на карте – средние углы наклона поверхности в гра-
дусах. (Карта на рисунке справа и значения расстояний и углов наклона поверхности на ней основаны на цифровой 
модели поверхности LDEM80S20M, составленной по данным, полученным Lunar Orbiter laser Altimeter (LOLA.))
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Длительные, в  несколько лунных суток, 
и дальние, в несколько сотен километров, экспе-
диции для создания подобных филиалов с выпол-
нением серьезных научных и  производственных 
задач, например, изложенных в  статье (Marov, 
Slyuta, 2021), возможны только в составе лунного 
поезда. С  помощью одного лунохода невозмож-
но обеспечить жизнеобеспечение и безопасность 
экипажа, совмещая это с  транспортировкой на-
учного оборудования и  геологических образцов, 
бурением скважин, прокладкой современных 
коммуникаций, выполнением научных исследо-
ваний, поиском полезных ископаемых в  приле-
гающих к трассе районах и т.п. Одной из важных 
задач подобной экспедиции, на наш взгляд, может 
стать доставка оборудования и создание на обрат-
ной стороне Луны лунной обсерватории, в  тени 
от радиошумов Земли.

Практическое обсуждение проблем подоб-
ной экспедиции стало возможным после того, как 
впервые в истории, 3 января 2019 г., на обратной 
стороне Луны была совершена посадка китайско-
го КА Chang’e-4, а затем к исследованиям днища 
кратера фон Карман также впервые в мире при-
ступила мобильная лаборатория Yutu-2. Получе-
ны обширные научные данные об  особенностях 
рельефа и  поверхностном покрове в  районе по-
садки (Ding и др., 2022). Уверенная связь лунной 
станции Chang’e-4 и  мобильной лаборатории 
Yutu-2 с Землей до настоящего времени осущест-
вляется с  помощью ретранслятора Queqiao relay 
satellite, который находится на гало-орбите с цен-
тром в точке Лагранжа 2. Скорость передачи дан-
ных на Землю составляет 2 Мбит/с. Каналы связи 
станции Chang’e-4 и  лунохода Yutu-2 с  ретранс-
лятором осуществляются со  скоростью соответ-
ственно 256–280 кбит/с и 125 бит/с. (Zhang, 2019).

22 марта 2024 г. Китай вывел в  космос вто-
рой ретранслятор Queqiao-2, который способен 
обеспечить более высокие характеристики связи 
объектов на  обратной стороне Луны с  Землей. 
Подобные линии могут обеспечить поддержку 
обсуждаемой экспедиции на  обратной стороне 
Луны. Но для обсерватории нужны постоянно 
действующие высокоскоростные линии связи. 
Такие стационарные линии проводной или релей-
ной связи могут быть проложены в ходе обсуждае-
мой экспедиции. Они свяжут научную аппаратуру 
удаленной обсерватории с МНЛС для последую-
щей трансляции на Землю огромного объема ин-
формации.

Имеющаяся в  мире информация уже сей-
час позволяет оценить в  первом приближении 
возможность реализации подобной экспедиции 

с точки зрения, во-первых, проходимости транс-
портного средства, во-вторых,  – уровня есте-
ственного освещения возможных трасс передви-
жения в этом полярном районе в течение лунных 
суток (рис. 5). Главным препятствием и для авто-
номного лунохода, и, тем более, для лунного по-
езда являются крутые подъемы. Исходя из опыта 
эксплуатации советских и  китайских луноходов, 
а также LRV, критичным для потери подвижности 
на лунном реголите могут быть углы подъема бо-
лее 25°. Но для варианта движения лунного поезда 
максимальный угол следует ограничить до 20° или 
даже до 15°. Сегодня такие споры еще не актуаль-
ны, но важно, что в принципе такие ограничения 
вполне допустимы на  реальном рельефе этого 
района.

На верхней части рис. 5 показана топография 
территорий на  возможных трассах упомянутой 
выше экспедиции из МНЛС на обратную сторо-
ну Луны, где зеленым цветом изображен рельеф 
с подъемами и спусками до 10°, 15° и 20°. Черной 
ломаной линией показан возможный маршрут 
движения с  соблюдением ограничений по  углу 
подъема. Как видно, для транспортных средств 
с проходимостью не менее 20° может быть доступ-
на значительная часть местности. Непроходимые 
участки при ограничении 15° увеличивают длину 
пути, но  не исключают возможности движения 
экспедиций к  Южному полюсу, через который 
проходит светлая пунктирная линия. 

На нижней части рис. 5, где показана солнеч-
ная освещенность того же района движения в те-
чение лунных суток с учетом реального рельефа 
местности, трассы движения обозначены жел-
тым цветом. Как видно из  рисунка, часть трас-
сы неизбежно придется преодолевать в темноте, 
поезд обязательно должен иметь собственное 
освещение и иметь ресурсы противостоять низ-
ким температурам не только на стоянках, но и в 
движении.

Но в  основном трасса все же не  является 
ночной. Сейчас еще сложно сравнивать рассве-
ты и закаты на Земле, в которых огромную роль 
играет атмосфера, и лунные сумерки в отсутствие 
атмосферы. Все это является предметом будущих 
исследований и  расчетов. Пока можно только 
предположить, что в пограничных районах с не-
достаточным естественным освещением приме-
нение осветительных приборов позволит реали-
зовать не только управляемое движение лунного 
поезда в  полярном районе, но  и  научные иссле-
дования, а  также простые операции на  лунной 
поверхности по всей выбранной трассе движения 
в течение лунных суток.
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Пока место размещения обсерватории на об-
ратной стороне Луны не выбрано даже на уровне 
сценария. Понятно только, что ее желательно раз-
вернуть также недалеко от Южного полюса. Не-
ясными являются характеристики связи лунного 
поезда с  МНЛС и  Землей, например, с  исполь-
зованием ретрансляционной станции по  типу 

Queqiao relay satellite. Эти обстоятельства пока ис-
ключают возможность расчетной оценки времени 
движения до места размещения лунной обсерва-
тории – автоматического филиала МНЛС.

Что касается создания обсерватории, то наи-
большее время займет поиск подходящего района 
и  подготовка площадок для размещения двух–
трех звеньев лунного поезда. Навесное оборудо-
вание одного из этих звеньев будет представлять 
собственно телескоп со  всеми бортовыми систе-
мами управления и  связи. Навесное оборудова-
ние двух других звеньев, скорее всего, могут пред-
ставлять собой электростанции различного типа 
с  буферными аккумуляторами. Это могут быть, 
например, солнечная электростанция и  радиои-
зотопный тепловой и  электрический генератор. 
Так что разгрузка электростанций будет представ-
лять собой расстыковку этих звеньев на подготов-
ленных площадках и последующую реконфигура-
цию лунного поезда в  новом составе. Благодаря 
мобильности обсерватории возможен выбор оп-
тимального места ее размещения в течение всего 
времени эксплуатации.

А каков технический задел по работе на Луне 
и в космосе на сегодня? Луноход-1 сохранял рабо-
тоспособность в течение 302 земных суток, 11 лун-
ных дней. В лунные ночи система терморегулиро-
вания советских и китайских робототехнических 
луноходов работала и работает на Yutu-2 в режиме 
сохранения работоспособности аппаратуры вну-
три герметичного отсека. Средняя скорость дви-
жения Лунохода-1 составила 0.14 км/ч, он прошел 
путь около 10.5 км. Луноход-2 двигался со средней 
скоростью 0.34 км/ч и за 125 земных суток прошел 
путь, по  уточненным данным, более 37 км (Ке-
мурджиан, 1993). Yutu-2 функционирует на обрат-
ной стороне уже пятый год.

Пилотируемые LRV, на которых ездили астро-
навты трех экспедиций программы Apollo (-15, -16 
и -17), в сумме проехали всего за 9 земных суток 
90.34 км. При этом суммарное время движения 
всех трех машин составило 11 ч 34 мин. (Young, 
2007). 

Что касается времени пребывания человека 
в космосе, то в начале 2024 г., пребывание совет-
ского космонавта Олега Кононенко на  орбите 
превысило 878 земных суток. 

Несмотря на  все очевидные различия усло-
вий работы людей на орбитальных станциях и на 
Луне, качественное усложнение задач, которые 
должны выполнить вновь создаваемые мобиль-
ные комплексы на Луне, в сравнении с задачами 
прошлого века, все же можно констатировать, что 
проведенные оценки наиболее сложной лунной 

10 км 10 км 10 км

Рис. 5. Распределение уклонов в районе горы Мала-
перт и южного полюса Луны (вверху); зеленым от-
мечены области, где уклон поверхности меньше за-
данного предела проходимости лунохода 10, 15 и 20 
град. Солнечная освещенность этой же местности 
(внизу). Черные и желтые линии – рекомендуемые 
трассы движения с  учетом ограничений по  углам 
подъема и освещенности местности. Карты уклонов 
и  освещенности построены по  топографическим 
данным высотомера LOLA (пространственное раз-
решение 60 м/пкс).
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экспедиции из МНЛС на обратную сторону Луны, 
уже не являются беспочвенными фантазиями. 

Обоснование структуры интеллектуальных 
мобильных платформ и их систем передвижения

В современной терминологии предложенные 
первопроходцами этой темы лунные поезда,  – 
это мобильные робототехнические комплексы 
(МРТК) с  переменной структурой. Все струк-
турные звенья такого комплекса должны быть 
самоходными, способными как к  автономному 
движению, так и  к движению в  составе поезда 
по сложному рельефу, в режимах пилотируемого 
и  автономного управления. Используя термино-
логию авторов первых разработок, можно сказать, 
что роль тягача в концепции авторов, выполняет 
каждая ИМП, входящая в состав лунного поезда.

В состав ИМП не  должны входить все си-
стемы, свойственные современным луноходам. 
Специализацию звеньям поезда на  основе уни-
фицированных ИМП придает навесное обо-
рудование. Например, навесное оборудование 
первого, командного, звена, наряду со  шлюзо-
вой камерой, герметичной кабиной с  креслами 
и  другим оборудованием, необходимым для во-
ждения и связи, будет включать и систему термо-
регулирования, обеспечивающую стабильность 
температуры в этой кабине и в отдельных отсеках. 
Нет смысла оснащать ИМП лунной системой 
навигации, а  система коммуникации, видимо, 

нужна в  ограниченном составе, например, без 
связи с Землей, которую обеспечит навесное обо-
рудование. Система энергопитания ИМП, кото-
рая нужна уже на этапах отработки, затем станет 
частью систем навесного оборудования.

А вот состав СШ ИМП неизбежно выходит 
за  структурные рамки СШ Лунохода-1 (Анисов 
и др., 1971) в связи с тем, что отработку и прие-
мо-сдаточные испытания АССУ необходимо про-
водить только в составе бортового оборудования 
СШ и  при наличии еще одной дополнительной 
подсистемы локальной навигации. Если не  рас-
ширять классический состав СШ, новую сово-
купность можно назвать системой передвижения 
и стыковки. Тогда, с учетом изложенного, струк-
турная схема ИМП может быть представлена 
в виде рис. 6.

В отличие от СШ робототехнических лунохо-
дов и  марсоходов, система передвижения ИМП 
должна обеспечивать возможность гибридного 
управления движением и  автономных лунохо-
дов, и  всего лунного поезда: дистанционного 
(из лунного, а в аварийных случаях, наземного, 
пунктов управления), пилотируемого (с пило-
том на  борту) и  автономно  – автоматического, 
с  заданием оператором только финишных ко-
ординат движения. При этом управление опера-
циями стыковки ИМП в составе лунного поезда 
с заданным порядком расположения звеньев и их 
расстыковки, например, для выезда из  состава 
поезда любого звена, указанного оператором, 

Рис. 6. Структурная схема интеллектуальной мобильной платформы.
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а  также последующее восстановление поезда 
в  новом составе, на  наш взгляд, должны обе-
спечиваться исключительно искусственным ин-
теллектом бортовых систем управления каждой 
пары взаимодействующих платформ. Экипаж 
может вмешаться в  эти процессы только в  ава-
рийных ситуациях, которые будут связаны с вне-
корабельной деятельностью. 

В качестве базового компонента системы пе-
редвижения и стыковки целесообразно использо-
вать наиболее универсальные четырехколесные 
полноприводные СШ. При условии симметрич-
ного расположения центра масс лунохода относи-
тельно колесной базы и колеи, четырехколесные 
СШ обеспечивают равноценность тягово-дина-
мических характеристик при прямом ходе и ревер-
се, что является существенным преимуществом 
рекомендуемой схемы. Например, полноприво-
дные шестиколесные китайские и  американские 
лунные и марсианские роверы, с подвеской типа 
Rocker-Bogie имеют различные тягово-динамиче-
ские характеристики при изменении направления 
движения, что существенно влияет на параметры 
опорной и профильной проходимости, например, 
на величину угла преодолеваемого подъема, а так-
же на устойчивость к продольному опрокидыва-
нию (Malenkov, Volov, 2019). 

Как показано в  монографии (Авотин и  др., 
1979), шестиколесные СШ имеют серьезное пре-
имущество перед четырехколесными только в ре-
жимах бортового поворота, путем различной ско-
рости вращения колес противоположных бортов. 
Особо значимым это преимущество оказывается 
при повороте на месте, т.е. с радиусом поворота, 
равным нулю при реверсе вращения колес про-
тивоположных бортов. Но в  данном случае СШ 
с  неповоротными колесами не  рассматривают-
ся. Для достаточно тонкого маневрирования при 
подготовке к стыковке АССУ двух звеньев лунно-
го поезда все колеса СШ должны быть снабжены 
рулевыми приводами.

Для обеспечения соосности механизмов 
стыковки АССУ двух ИМП каждое мотор-ко-
лесо должно быть снабжено также приводным 
механизмом активной подвески, позволяющим 
регулировать относительное положение каждого 
колеса и корпуса по вертикали. Одновременная 
работа этих приводов всех четырех колес позво-
ляет изменять положение продольной оси ак-
тивного АССУ в  пространстве соответственно 
положению продольной оси пассивного АССУ 
впереди стоящего звена лунного поезда.

На основе четырехколесных шасси (рис. 7) 
можно получить и  восьмиколесные машины 

Рис. 7. Структурная схема самоходного шасси системы передвижения ИМП.
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с жесткой рамой, и двухсекционное СШ с гиб-
кой связью звеньев, и  многоколесный лунный 
поезд с числом колес, кратным цифре 4. 

В части регулирования положения колес 
и корпуса по вертикали, в коллективе, которым 
руководил А.Л. Кемурджиан, имеется солидный 
научно-технический задел. Еще в  1983 г. здесь 
был создан ходовой макет экспериментального 
самоходного автоматического шасси, который 
обеспечивал как движение в  колесно-шагаю-
щем режиме с прерывной походкой с помощью 
механизмов шагания (МШ), так и колесный ре-
жим с  регулированием при помощи тех же ме-
ханизмов МШ относительного положения колес 
и корпуса по вертикали (рис. 8.) (Громов и др., 
1986). Однако данное регулирование могло про-
изводиться только во время остановки. 

В нашем веке авторами были разработаны 
технические решения по  конструкции ходовой 
части современных СШ, в  которых реализован 
переход от  мотор-колес к  опорно-движитель-
ным модулям (ОДМ). ОДМ, схема которого 
приведена на рис. 9, объединяет в единой меха-
тронной конструкции все упомянутые приводы 
колеса: тяговый, рулевой и  привод активной 
подвески, с  возможностью переключения в  ре-
жим колесного шагания (Маленков и  др., 2017; 
Malenkov, Bogachev and others, 2019). При этом 
новые технические решения позволяют регули-
ровать клиренс и управлять активной подвеской 
в процессе движения (Волов и др., 2017).

Рис. 8. Фрагмент испытаний экспериментального 
образца самоходного автоматического шасси при 
регулировании относительного положения колес 
и корпуса по вертикали в районе недавних изверже-
ний вулкана Толбачик на Камчатке.
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Рис. 9. Кинематическая схема ОДМ самоходного 
шасси ИМП:
1  – привод активной подвески на  основе двухры-
чажного МШ циркульного типа (привод условно 
показан повернутым на 90° относительно оси 0-0); 
2 – механическая муфта для переключения режимов 
работы активной подвески и колесного шагания; 3 – 
электродвигатель; 4 – редуктор; 5 – первый рычаг; 
6 – реактивная цепная передача (i = 1); 7 – второй 
рычаг; 8  – цепная суммирующая передача (i = 2); 
9  – рулевой механизм; 10, 11  – электродвигатель 
и  редуктор рулевого механизма; 12  – жесткая ме-
ханическая связь выходного вала привода актив-
ной подвески с рулевым механизмом; 13 – тяговый 
привод мотор-колеса; 14, 15, 16 – электродвигатель, 
двухскоростная коробка передач и редуктор тягово-
го привода; 17 – колесо.
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Колесная формула СШ и, следовательно, 
ИМП и  всего звена лунного поезда в  целом 
может быть записана в  виде 4 × 4 × 4 × 4, где 
первая цифра указывает на  количество колес, 
вторая  – на  количество приводных колес, тре-
тья – на количество колес с рулевыми механиз-
мами, четвертая – на количество колес с приво-
дами активной подвески, конструкция которой, 
при необходимости, обеспечивает возможность 
переключения на режим колесного шагания. 

Модульный подход отвечает идее унифика-
ции, благодаря возможности тщательной экспе-
риментальной отработки ресурса всей ходовой 
части и приводов СШ с имитацией всех условий 
эксплуатации во  время испытаний одного мо-
дуля. Это резко снижает требования к  габари-
там и  другим характеристикам испытательного 
оборудования – термовакуумным камерам, раз-
личного рода нагружателям, ударным, вибраци-
онным стендам и т.п. При этом достигается мак-
симальная плотность компоновки конструкции 
ОДМ и  простота сопряжения ОДМ с  несущей 
рамой. 

Упрощенная компоновочная схема систе-
мы передвижения ИМП приведена на  рис. 10. 
Поскольку АССУ должны обеспечивать свобо-
ду поворота каждого ИМП относительно трех 
осей, условно они могут быть показаны в  виде 
шаровых шарниров. 

Состав поезда будет определяться транспор-
тно-технологическими задачами при строитель-
стве станции, а в дальних, длительных экспеди-
циях еще и научными задачами, а также задачами 

поиска и  добычи полезных ископаемых и  т.п. 
Как минимум, кроме первого, командного, 
и следующего за ним, жилого, звеньев, в состав 
МРТК в  длительных экспедициях, очевидно, 
должны входить звенья, обеспечивающие ре-
зервное электропитание всех звеньев (мобиль-
ная электростанция); резервное хранение, (а 
возможно, и синтез), продуктов жизнеобеспече-
ния космонавтов; грузовое звено для перевозки 
строительных материалов, оборудования и  об-
разцов грунта, звено для транспортировки труб, 
развертывания и бурения грунта и т.п. Упрощен-
ная компоновочная схема поезда из  трех ИМП 
показана на рис. 11.

12 233

Рис. 10. Упрощенная компоновочная схема интел-
лектуальной мобильной платформы: 1 – самоходное 
шасси; 2  – активное (слева) и пассивное (справа) 
автоматические стыковочно-сцепные устройства 
(АССУ); 3 – камеры для локальной навигации при 
выполнении операций стыковки и расстыковки зве-
ньев лунного поезда в заданной оператором после-
довательности.

1 2 345

1 2 345

Рис. 11. Упрощенная компоновочная схема трехзвенного МРТК (навесное оборудование условно не  показано) 
на базе трех ИМП: 1, 2, 3 – самоходные шасси; 4 – АССУ с тремя степенями свободы; 5 – камеры системы локаль-
ной навигации.
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В составе поезда может быть также мобиль-
ное звено в виде быстроходного негерметичного 
вездехода типа Lunar Roving Vehicle, предназна-
ченного для разведки местности, сопровождения 
и обслуживания буровой установки, а также для 
оперативного использования в аварийных ситу-
ациях. Вездеход может перевозиться на приспо-
собленной для этого грузовой ИМП, которая 
должна быть оборудована аппарелями для въез-
да/съезда вездехода и элементами крепления его 
на грузовой площадке.

Расчетная оценка основных параметров 
самоходного шасси ИМП

Как показано выше, самоходное шасси яв-
ляется основной подсистемой системы передви-
жения ИМП, предназначенной для крепления 
и транспортировки всей установленной на этом 
шасси служебной аппаратуры, а также специаль-
ного навесного оборудования. 

Расчетная оценка геометрических параметров 
ведущих колес самоходного шасси. Для расчетной 
оценки параметров ведущих колес самоходного 
шасси принимаем массу машины, которая может 
служить командным звеном с герметичной каби-
ной, 3 т. Определим размеры колес, исходя из не-
сущей способности грунта и обеспечения необхо-
димого коэффициента сопротивления качению 
колеса. Расчетная схема показана на рис. 12.

Исходя из  опыта эксплуатации советских 
луноходов, принимаем коэффициент сопро-
тивления качению по  лунному реголиту f = 0.2 
и  рассматриваем в  первом приближении дви-
жение на  ровной горизонтальной поверхности. 
Для оценки величины давления колеса на грунт 
исходим из среднего значения прочности грун-
та 14.3 кПа, полученного по  анализу колеи со-
ветских луноходов (-1 и -2) (Базилевский и др., 
2021). 

Согласно расчетной схеме рис. 12, верти-
кальная реакция грунта равна Fn = PZ. Удельное 
давление на грунт равно 

	 q = PZ/s,	

где s  – площадь проекции поверхности обода 
колеса, взаимодействующего с  грунтом, на  го-
ризонтальную плоскость.

	 s l b= ⋅ ,	 (1)

где b – ширина колеса, l – продольный размер 
площадки s.

	 l r= ⋅ ( )sin 2δ ,	 (2)

где δ = arcsin (k/r) или δ = arcsin (f).
Тогда

	 s b r f= ⋅ ⋅ ⋅ ( )( )sin arcsin2 .	 (3)

Таким образом,

	 q P b r fZ= ⋅ ⋅ ⋅ ( )( )( )sin arcsin2 .	 (4)

Следовательно, радиус колеса равен:

	 r P q b fZ= ⋅ ⋅ ( )( )( )sin arcsin2 . 	 (5)

С учетом массы машины 3 т находим верти-
кальную силу колеса, действующую на грунт для 
четырехколесного шасси при лунной силе тяже-
сти (ускорение свободного падения gM=1.62 м/с2).

	 PZ = ⋅ =3000 1 62 4 1208. .Н 	

Принимаем ширину колеса по  отношению 
к его радиусу пропорционально геометрии колес 
советских луноходов: b = 0.8r.

Подставляя это условие в формулу (5), полу-
чим выражение для радиуса колеса:

	 r
P

q f
= ( )( )

Z

sin arcsin0 8 2.
.	 (6)

Fn

Ft

F

k

Pz
r

l

2δ

δ

Рис. 12. Расчетная схема сил при равномерном каче-
нии колеса по лунному реголиту:
PZ  – прижимная сила; Fn  – нормальная реакция 
грунта; Ft  – горизонтальная реакция грунта; F  – 
горизонтальная тяговая сила, приложенная к  оси 
колеса; k  – плечо действия вертикальной реакции 
грунта (k = f ‧ r, где r – радиус колеса); l – продоль-
ный размер площадки деформации грунта.
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Отсюда находим радиус колеса:

	 r �
� � � �� � �

1208

0 8 14300 2 0 2
0 52

. .
. .

sin arcsin
 м 	

Таким образом, для обеспечения опорной 
проходимости самоходного шасси в  соответ-
ствии с исходными данными радиус колеса дол-
жен быть не менее 0.52 м.

Компоновка самоходного шасси. Доставка всех 
ИМП на Луну должна осуществляться в полном 
сборе со  своим навесным оборудованием, гото-
вым к автоматическому развертыванию и после-
дующему движению. Принимаем внутренний 
диаметр обтекателя ракеты равным 5  м. Таким 
образом, ИМП, с  учетом возможностей кон-
вертирования самоходного шасси, должна раз-
мещаться внутри окружности диаметром 5.0  м, 
соответствующей внутреннему диаметру обтека-
теля ракеты (рис. 13). На рис. 14 показано рабочее 
положение шасси. 

ИМП для экспедиций и  лунных поездов. 
Как отмечалось, сценарий данного исследова-
ния предусматривает движение по  местности 
в окрестностях лунной базы и всего массива Ма-
лаперт, а также дальние маршруты в район южно-
го полюса Луны. 

Рассмотрим движение на  подъем четырехко-
лесной ИМП, имеющей массу вместе с полезной 
нагрузкой 3 т. Полезной нагрузкой в данном случае 
может быть оборудованная кабина и космонавты 
до  двух человек, инструменты и  оборудование: 

буровое, энергетическое, груз для обеспечения 
жизнедеятельности экспедиции и т.п. Для увели-
чения пятна контакта и соответствующего сниже-
ния удельных нагрузок, действующих на лунный 
реголит, а  также для повышения проходимости, 
целесообразно использовать колеса с максималь-
но возможным диаметром.

Из рис. 13 видно, что диаметр колеса не дол-
жен превышать 1.1 м, ширина принимается 0.4 м 
по  пропорциям колес советских луноходов. Для 
частичной компенсации динамики от взаимодей-
ствия колеса с  грунтом колесо должно быть ме-
таллоупругим. В  качестве аналога такого колеса 
может служить, например, колесо (рис. 3) маке-
та двухсекционного планетохода, приведенного 
на рис. 1. 

Для обеспечения плавности хода и  повыше-
ния комфорта пилотируемого лунохода шасси 
оснащено независимой торсионной подвеской 
с  качанием рычагов направляющего механизма 
в продольной плоскости, аналогично подвескам 
Лунохода-1 и Лунохода-2, которые показали вы-
сокую проходимость по  сложно-пересеченной 
местности, при преодолении эскарпов и контрэ-
скарпов. 

Пассивная упругая подвеска дополняется ак-
тивной подвеской колес, выполненной на осно-
ве двухрычажных механизмов циркульного типа 
с плечом рычага 100 мм, что позволяет дополни-
тельно увеличивать хода подвески до 400 мм, на-
пример, менять клиренс, преодолевать колесами 
препятствия высотой больше ходов упругой под-
вески, поддерживать горизонтальное положение 
корпуса при движении по  неровному профилю 

Рис. 13. Компоновочная схема шасси в конвертиро-
ванном положении.
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Рис. 14. Компоновочная схема самоходного шасси 
ИМП в рабочем положении.
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и  на косогоре, обеспечивать соосность АССУ 
по высоте при стыковке двух ИМП. Кинематиче-
ская схема такой подвески показана на рис. 9.

Учитывая большое разнообразие условий 
движения по  поверхности Луны, для расшире-
ния скоростного и силового диапазонов регули-
рования тягового привода мотор-колеса исполь-
зуется встроенная в  привод двухступенчатая 
КПП, которая обеспечивает скорость движения 
на  первой передаче 1 км/ч, на  второй передаче 
5 км/ч. В  качестве аналога может рассматри-
ваться двухступенчатая КПП (рис. 2).

Отношение массы СШ к  общей массе ма-
шины является для лунохода одним из важных 
параметров для моделирования ходовых испы-
таний, характеризующих взаимодействие дви-
жителя с грунтом. Отношение ускорения силы 
тяжести на Луне к земному ускорению силы тя-
жести равно 1/6, поэтому целесообразно, чтобы 
отношение массы СШ к общей массе машины 
не  превышало это значение, так как при раз-
нообразных ходовых испытаниях самоходного 
шасси, в том числе на открытых полигонах воз-
можно проводить испытания ходовых макетов 
без использования сложных устройств и  си-
стем для имитации пониженной гравитации. 
При ходовых испытаниях в  этом случае масса 
ходового макета моделирует вес всей машины 
на Луне. Имитация положения центра тяжести 
машины производится дополнительным грузом 
относительно небольшой массы, который уста-
навливается на  определенной высоте на  ходо-
вом макете.

Данный принцип проектирования самоход-
ного шасси применялся при создании совет-
ских луноходов. В состав СШ луноходов входи-
ли блоки мотор-колес, блок автоматики шасси 
и  кабельная сеть. СШ не  имело рамы, а  блоки 
мотор-колес крепились непосредственно крон-
штейнами к приборному контейнеру луноходов. 
Соотношение массы СШ к полной массе состав-
ляет 1/7 для Лунохода-1 и  1/8 для Лунохода-2. 
Для ходовых макетов дополнительно использо-
валась специальная рама, к  которой крепились 
блоки мотор-колес, а  также устанавливались 
источники питания. При этом масса ходовых 
макетов составляла примерно 1/6 от  массы Лу-
нохода-1 и Лунохода-2, таким образом вес ходо-
вых макетов в земных условиях имитировал вес 
Лунохода-1 и Лунохода-2 на Луне. 

В состав ИМП входит самоходное шасси 
с  рамой и  источниками питания, таким обра-
зом вполне рационально ИМП в  полной кон-
фигурации рассматривать и  для применения 

в  качестве ходового макета. Для этого масса 
ИМП должна быть равна 1/6 от  полной пере-
мещаемой массы ИМП с  грузом и  составлять 
в  данном случае 3000/6 = 500 кг. Это позволит 
проводить испытания ходовых макетов ИМП 
в  полной конфигурации, что особенно важно 
для ходовых испытаний, для проверки работы 
и алгоритмов системы управления, техническо-
го зрения и АССУ. Тяговые приводы мотор-ко-
лес и приводы активной подвески по режимам 
нагружения, учитывая невысокие скорости дви-
жения, будут работать при этом условно в лун-
ном поле силы тяжести.

В расчетном анализе тяговых приводов мо-
тор-колес рассматривается длительное прео-
доление машиной подъема по  связному грун-
ту на  первой передаче, например, при выезде 
из  кратеров. При этом считается, что опорная 
поверхность под колесами обеих бортов имеет 
одинаковые характеристики, движение проис-
ходит в направлении угла наибольшего подъема. 
Ввиду низкой скорости движения планетохода 
характер движения в  колесном режиме можно 
считать квазистатическим.

Расчетная схема для тягового расчета равно-
мерного прямолинейного движения на  подъем 
приведена на рис. 15. 

Силы, действующие в контакте колес с грун-
том, приведены к  оси колеса. Реактивный мо-
мент, равный по  величине крутящему моменту 
на  выходном валу колесного привода, прило-
жен к  корпусу привода и  через него действует 
на подвеску. Под действием реактивного момен-
та тяговых приводов и  момента от  продольной 
составляющей силы тяжести машины упругие 
подвески колес будут иметь различную дефор-
мацию. У задних колес деформация будет боль-
ше, у передних меньше.

Шасси абсолютно симметрично относитель-
но вертикальной продольной плоскости, прохо-
дящей через его середину. Поэтому при расчете 
можем рассматривать только половину машины.

В этом случае схема является статически 
определимой и задача решается путем составле-
ния уравнений статического равновесия. 

Для определения крутящих моментов на ко-
лесах при равномерном движении, рассмотрим 
условия равновесия всех действующих сил 
в  проекциях на  оси координат XOZ и  всех мо-
ментов. Запишем соответствующие уравнения 
статики в виде суммы сил на ось Z и суммы мо-
ментов относительно точки О1: 

	 � � � �Z Mi О0 0
1

, � � � � .	 (7)
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На основании условий (7) получим следую-
щие выражения:

	 P P
mg

Z Z
M

1 2 2
0cos ,+ − =α 	 (8)

P
L

M M P
L

mg h rZ Z M2 2 1 12 2
1
2

0sin .− − − − −( ) =α 	 (9)

Учитывая, что реактивный момент на колесе 
равен
	 M P ri Xi= × ,	 (10)

а тяговая сила колеса равна

	 P P fXi Zi= +( )tgα ,	 (11) 

совместным решением (8) и  (9) получим соот-
ветствующие выражения для определения нор-
мальных реакций на колесах: 

	 P
mg

L
L h frZ

M
1 4

2 2= − −( )cos sin cosα α α ,	  (12)

	 P
mg

L
L h frZ

M
2 4

2 2= + +( )cos sin cosα α α .	  (13)

Исходные данные для расчета представлены 
в табл. 1.

Графики распределения нормальных реак-
ций на колесах показаны на рис. 16.

Находим потребную мощность для тягового 
привода наиболее загруженного кормового ко-
леса по формуле

	 N P f VZ= +( )2 tgα η.	 (14)

При V = 0.28 м/с, η = 0.6 получим
	 N = +( ) =1539 0 2 0 28 0 6 402tg20 Вт. . . . 	

Таким образом, потребная мощность тяго-
вых приводов мотор-колес принимается 400 Вт. 
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Рис. 15. Расчетная схема четырехколесного ИМП с грузом при движении на подъем: V – скорость машины; PXi – 
тяговая сила колеса; PZi – нормальная реакция колеса; Pfi – сила сопротивления качению колеса; Mi – реактивный 
момент тягового привода; O – центр масс машины; L – колесная база; h – высота центра масс машины; r – радиус 
колеса; α – угол подъема; с1 – жесткость подвески; с – радиальная жесткость колес; m – полная масса ИМП с гру-
зом; gM – ускорение силы тяжести на Луне; 1 – переднее колесо, 2 – заднее колесо; φt – угол поворота корпуса 
за счет упругости подвески и колес под действием момента сил.
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Расчеты также показывают, что на  второй пе-
редаче, со  скоростью до  5 км/ч, при полной 
полезной нагрузке данная мощность двигателя 
обеспечивает движение по  горизонтальной по-
верхности и небольших уклонах, до 5°. Для пре-
одоления затяжных подъемов должна использо-
ваться первая передача.

Оценка энергозатрат ИМП и параметров акку-
муляторных батарей. Приведенные на рис. 4 карты 
позволяют сделать первую оценку времени экспе-
диции, например, для безопасной трассы с угла-
ми подъема не более 15°. Длина трассы, ограни-
ченной от  МНЛС в  районе массива Малаперт 
до  пунктирной линии пересечения, проходящей 
через Южный полюс, составляет более 300 км. 
Проектная скорость движения лунного поезда 
может составлять 1 км/ч на низшей передаче для 

движения на сложном рельефе с углами подъема 
до 20° и скорость до 5 км/ч при движении с углами 
подъема менее 5°.

Допустим, что средняя скорость движения со-
ставит 2.5 км/ч. Распишем время движения экипа-
жа из четырех космонавтов, используя временную 
сетку земных суток. Предположим, собственно 
движение составляет не более 8 ч в земные сутки. 
Остальное время занимают остановки для уточ-
нения трассы, анализа состояния техники, свя-
зи и т.п., обработка научных материалов, личное 
время и  сон. Тогда, за  сутки поезд будет прохо-
дить 20 км, а общее время движения экспедиции 
в одну сторону составит 15 земных суток. Еще 15 
земных суток могут потребоваться для работы 
космонавтов в скафандрах на поверхности Луны 
по трассе движения. По сложившейся в советской 
космонавтике терминологии это внекорабельная 
деятельность (ВКД). Во время ВКД с использова-
нием автономного ИМП могут быть выполнены: 
научные исследования и изыскания полезных ис-
копаемых в районах, прилегающих к трассе; рабо-
ты по прокладке линий высокоскоростной связи 
обсерватории с  МНЛС; работы по  обеспечению 
мобильной связи с МНЛС, а также между участ-
никами экспедиции по всей трассе движения. 

Таким образом, общее время экспедиции 
в  один конец, включая стоянки на  местах про-
ведения исследований, составит примерно одни 
лунные сутки или около земного месяца. 

При номинальной мощности тягового приво-
да мотор-колеса 400 Вт номинальная мощность 
на  движение для четырехколесного шасси равна 
1600 Вт. Исходя из  этого значения, произведем 
оценку емкости аккумуляторной батареи, обеспе-
чивающей движение ИМП в составе поезда в сце-
нарии продолжительной экспедиции.

Для движения в номинальном режиме в тече-
ние 8 ч ИМП необходимо 1.6 × 8 = 12.8 кВт × ч 
энергии. Эту величину можно принять как ем-
кость аккумуляторной батареи. Еще одну батарею 
такой же емкости можно принять для жизнеобе-
спечения экипажа и  для работы системы управ-
ления. Если ориентироваться на  энергоемкость 
современных литий-ионных батарей, которая 
составляет до  250 Вт × ч/кг (Кулова, 2019), мас-
са одной батареи будет равна 51 кг. Две батареи 
составят примерно одну пятую от  массы ИМП. 
Для зарядки батарей во  время стоянки потребу-
ется мощность энергоустановки не менее 1.6 кВт. 
Если принять в качестве энергоустановки солнеч-
ные панели, то  при интенсивности солнечного 
излучения 1000  Вт/м2 и  КПД солнечной панели 
20% для выработки электроэнергии мощностью 

Таблица 1. Исходные данные для тягового расчета

Наименование параметра, размерность Величина

Полная масса, m, кг 3000

Ускорение свободного падения 
на Луне, gM,м/с2 1.62

Высота центра масс, h, м 1.2

Колесная база, L, м 3.14

Радиус колеса, r, м 0.55

Коэффициент сопротивления 
движению, f 0.2

Скорость движения, V, м/с 0.28

Рис. 16. Распределение нормальных реакций на ко-
лесах четырехколесного шасси в зависимости от угла 
подъема.
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1.6 кВт потребуется площадь солнечной панели 
8 м2. Солнечная панель таких размеров вписыва-
ется в габариты ИМП и, например, может разме-
ститься в сложенном положении на крыше каби-
ны командного звена.

Состав и  режимы работы опорно-движитель-
ного модуля самоходного шасси ИМП. Для шасси 
ИМП предлагается применение активной подве-
ски, выполненной на основе двухрычажного ме-
ханизма циркульного типа (рис. 9). 

Согласно рис. 9, в  ОДМ входят рулевой ме-
ханизм 9, тяговый привод колеса 13 и  привод 1 
двухрычажного механизма, выполняющий функ-
цию активной подвески. На рис. 9 привод 1 пока-
зан условно повернутым относительно оси О–О 
на 90°. В режиме работы активной подвески ры-
чаги 5 и 7 привода 1 в номинальном положении, 
когда свободные оси этих рычагов совпадают, 
располагаются параллельно опорной поверхно-
сти и перпендикулярно оси вращения механизма 
поворота.

Учитывая достаточно большие размеры ко-
леса, тяговый привод колеса, рулевой механизм 
и  механизм активной подвески размещаются 
во внутреннем объеме колеса. При этом сам при-
вод активной подвески является достаточно ком-
пактным, обеспечивая в активном режиме значи-
тельные хода, поскольку суммарный ход подвески 
равен четырехкратной длине рычага двухрычаж-
ного механизма. 

При работе привода активной подвески вы-
полняется линейное перемещение свободных 
осей рычагов 5 и  7 привода 1 перпендикулярно 
опорной поверхности при одновременной работе 
тяговых приводов 13 мотор-колес, обеспечиваю-
щих движение ИМП в колесном режиме.

Свободная ось первого рычага 5 всегда совпа-
дает с приводом 1, свободная ось второго рычага 
7 всегда совпадает с осью жесткой механической 
связи с неповоротным корпусом 9 рулевого меха-
низма (механизма поворота колес). В номиналь-
ном положении привода 1 свободные оси рычагов 
совпадают. 

Важной конструктивной особенностью при-
вода активной подвески является обеспечение 
неизменной ориентации положения привода 9 
рулевого механизма таким образом, чтобы ось 
шкворня всегда проходила через пятно контакта 
колеса с поверхностью движения. Такая ориента-
ция обеспечивается встроенной в рычажный ме-
ханизм реактивной цепной передачей 6. Входная 
звездочка цепной передачи соединена с корпусом 
привода 1, который муфтой 2 соединен с  рамой 
шасси, а  выходная звездочка  – через жесткую 

механическую связь 12 – с неповоротным корпу-
сом 9 рулевого механизма. 

Передаточное отношение цепной передачи 
равно единице, поэтому при вращении рычагов 
колесный модуль с приводом поворота совершает 
относительно корпуса машины только плоско-па-
раллельное движение, нормальное к поверхности 
движения. 

Такая кинематическая связь обеспечивает так-
же передачу реактивного момента тягового приво-
да 13 непосредственно на раму шасси, в результате 
привод подвески не  нагружается дополнительно 
реактивным крутящим моментом от привода ко-
леса, что упрощает алгоритмы его управления 
и  снижает энергозатраты. Торсионный элемент 
пассивной упругой подвески так же разгружен 
от действия реактивного крутящего момента тяго-
вого привода за счет четырехзвенной параллело-
граммной схемы балансира.

Кроме того, привод двухрычажного механизма 
при работе активной подвески полностью урав-
новешен от  действия продольной составляющей 
веса машины при движении на  подъем или под 
уклон. Указанные силы замыкаются в рычажном 
механизме привода, и  нагрузкой двигателя яв-
ляются только потери в  передающем механизме 
от действия этих замкнутых сил. Учитывая высо-
кий КПД цепных передач, эти потери будут не-
значительными.

Схема работы двухрычажного механизма цир-
кульного типа в составе привода активной подве-
ски ОДМ показана на рис. 17. При работе привода 
подвески (рис. 17а) подается питание на электро-
магнит тормоза 3, который при этом выключается 
и освобождает вал электродвигателя 2. Вращение 
от электродвигателя 2 передается через редуктор 4 
на первый рычаг 5. Поскольку звездочка 8 цепной 
передачи закреплена в корпусе 1, рычаг 7 за счет 
передаточного отношения цепной передачи сум-
мирующего редуктора 8 с передаточным отноше-
нием u = 2 будет вращаться в  обратную сторону 
относительно рычага 5 с  удвоенной относитель-
ной скоростью, что обеспечивает линейное пе-
ремещение оси выходного вала двух рычажного 
механизма.

Так как первый и  второй рычаги кинемати-
чески связаны между собой, то перемещение оси 
выходного вала второго рычага, согласно рис. 17б, 
определяется по формуле

	 z l� � �2 1cos� ,	 (15)

где z �– линейная координата свободной оси вто-
рого рычага относительно оси первого рычага; 
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l  – длина рычага; β1  – угол поворота первого 
рычага.

Таким образом, имеется возможность измере-
ния вертикального хода подвески и вертикальной 
координаты оси колеса относительно рамы шас-
си с  целью автоматического управления подве-
ской при движении шасси по сложному рельефу.

Результаты проектно-компоновочных разрабо-
ток и  расчетно-теоретического обоснования кон-
цепции интеллектуальных мобильных платформ. 
Проведенные исследования подтвердили воз-
можность проектирования унифицированных 
самоходных шасси и ИМП, на базе этих шасси, 

для использования как в составе автономных лу-
ноходов различного назначения, так и в составе 
звеньев лунного поезда. Расчетные параметры 
унифицированных самоходных шасси, включая 
их грузоподъемность, приведены в табл. 2. 

Общий вид самоходного шасси ИМП, рас-
крывающий с  некоторыми упрощениями кон-
цепцию его проектирования, приведен на рис. 18.

Безусловно, что расчетные параметры и про-
ектный облик ИМП будут уточняться в процес-
се разработки. Но разработанная концепция уже 
сейчас позволяет оценить возможность выпол-
нения важнейших технологических операций 
на  этапе создания МНЛС (операции разгрузки, 
транспортировки и  монтажа модулей станции) 
и  на этапе эксплуатации МНЛС (длительные 
экспедиции, в  том числе на  обратную сторону 
Луны). Продолжается также разработка АССУ 
и конструктивного облика ИМП в целом, созда-
ние 3D-моделей и компьютерное моделирование 
различных сценариев применения ИМП при соз-
дании и эксплуатации МНЛС.

Рис. 17. Кинематическая схема привода активной 
подвески (а) ОДМ и его двухрычажного механизма 
циркульного типа (б): 1 – корпус привода; 2 – элек-
тродвигатель; 3 – электромагнитный тормоз; 4 – ре-
дуктор; 5 – первый рычаг; 6 – реактивная цепная пе-
редача (u = 1); 7 – второй рычаг; 8 – цепная передача 
суммирующего редуктора (u = 2); β1 – угол поворота 
первого рычага; 9 – подвеска или рама шасси; 10 – 
рулевой привод; 11 – тяговый привод; 12 – колесо; 
� ��
�

�
�
� �  – угловая скорость рычагов; МР1i  – момент 

вращения на первом рычаге; PZi – вертикальная сила 
при работе двухрычажного механизма.
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Рис. 18. Концепция ИМП. Общий вид и состав си-
стемы передвижения и стыковки (навесные компо-
ненты систем управления, коммуникации, локаль-
ной навигации, а  также кабельные сети условно 
не  показаны): 1, 9  – мотор-колесо со  встроенным 
тяговым приводом; 2 – рулевой механизм с приво-
дом; 3  – кронштейн жесткой механической связи 
привода активной подвески с  рулевым механиз-
мом; 4 – рама самоходного шасси со встроенными 
системой энергопитания и  электронными блоками 
систем управления, локальной навигации и комму-
никации; 5, 8 – пассивный и активный механизмы 
АССУ; 6, 7 – реактивный рычаг и балансир пассив-
ной подвески с упругим элементом в виде торсиона; 
10 – привод активной подвески; 11, 12 – рычаги ме-
ханизма активной подвески.
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Таблица 2. Расчетные параметры самоходного шасси ИМП на этапе выбора концепции

Наименование параметра, обозначение, 
ед. измерения ИМП для автономного лунохода и для звена лунного поезда 

Назначение ИМП
Обеспечение мобильности специализированного навесного 

оборудования, транспортировка космонавтов и грузов, 
поддержка научных исследований и технологических операций

Колесная формула 4 × 4 × 4 × 4

Колесная база, м 3.14

Колея, м 3.14

Диаметр колес (по грунтозацепам), d, м 1.1

Ширина колес, b, м 0.44

Тип колеса С металлоупругой профильной шиной, организованной 
на жестком ободе с грунтозацепами

Тип комбинированной активно-
пассивной подвески

Активная (приводная) рычажная подвеска циркульного 
типа, способная к реконфигурации для реализации режима 

колесного шагания. Пассивная подвеска – рычажный 
параллелограмм с продольным качанием рычагов и упругими 

элементами в виде торсионов 

Плечо рычагов механизма регулирования 
хода подвески по вертикали, м 0.1

Ход активной подвески:

Клиренс номинальный, м 0.45

Клиренс максимальный, м 0.65

Клиренс минимальный, м 0.25

Ход пассивной подвески, м 0.4

Скорость, км/ч:
1-я передача
2-я передача

1.0
5.0

Масса самоходного шасси ИМП, кг 500

Грузоподъемность, кг 2500

Макс. угол подъема с полной нагрузкой 
на первой передаче, град 20

Потребная мощность тягового 
электродвигателя мотор-колеса, Вт 400

Угол поворота рулевого привода СШ 
ИМП, град 45
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ЗАКЛЮЧЕНИЕ

В настоящее время имеется опыт доставки 
и эксплуатации луноходов на видимой и обрат-
ной сторонах Луны, а также опыт эксплуатации 
орбитальных космических станций. Это позво-
ляет перейти от  описательных к  инженерным 
методам разработки концепции проектного об-
лика унифицированной интеллектуальной мо-
бильной платформы (ИМП), на  базе которой, 
используя специальное навесное оборудование, 
можно создавать как автономные луноходы, так 
и  лунные поезда различного назначения: про-
кладка дорог и  других коммуникаций; разгруз-
ка, транспортировка и монтаж модулей МНЛС; 
дальние экспедиции, например, с целью органи-
зации автоматических филиалов МНЛС для рас-
ширения фронта научных исследований, поиска 
и добычи полезных ископаемых. 

Предложенные методические подходы и вы-
полненные на  их основе проектно-компоно-
вочные и расчетно-теоретические исследования 
позволили обосновать инженерную концепцию 
ИМП с  собственной массой 500 кг, на  которой 
может быть размещено различное навесное обо-
рудование общей массой не более 2500 кг. Такие 
ИМП, полной массой 3000 кг, предназначены 
как для автономного использования, так и  для 
выполнения различных транспортно-техно-
логических операций и  научных исследований 
в составе лунных поездов.

Преимуществами концепции унифициро-
ванных многофункциональных ИМП являются 
следующие возможности:

– �снижения стоимости изготовления и кон-
вейерной сборки ИМП при высоком 
уровне отработки конструкций не  только 
в  процессе испытаний, но  и  в процессе 
эксплуатации на Луне при постепенно уве-
личивающемся ресурсе и  усложняющихся 
условиях;

– �реализации, после установки специали-
зированного навесного оборудования, 
не  только транспортных, но  и  дорожных, 
строительных, монтажных, геолого-разве-
дочных и  горнодобывающих технологий, 
а  также комплексных научных исследо-
ваний практически на  всей территории 
Луны, включая вечно темные кратеры 
и обратную сторону Луны;

– �создания благоприятных условий для 
своевременной разработки различно-
го навесного оборудования автономных 
луноходов и  звеньев лунных поездов, 

ориентированного на использование в ка-
честве полезного груза ИМП;

– �повышения проходимости автономных 
луноходов на  рыхлых грунтах и  сложном 
рельефе при автономной эксплуатации 
благодаря применению активных подвесок 
и колесно-шагающего режима движения;

– �обеспечения патентной чистоты и  техно-
логической независимости лунной мо-
бильной робототехники, базирующейся 
на отечественных прототипах и новых от-
ечественных патентноспособных решени-
ях;

– �максимального использования науч-
но-технического задела и  опыта проекти-
рования самоходных шасси планетоходов, 
накопленного в  прошлом и  новом веках 
инженерами и  учеными школы главного 
конструктора самоходного шасси Лунохо-
да-1 А.Л. Кемурджиана. 

Подводя итог, можно говорить о концепции 
постоянной мобильности всех самостоятельных 
компонентов МНЛС, включая дублеры ее пило-
тируемых модулей, для повышения безопасно-
сти экипажей станции и обеспечения возможно-
сти ее реконфигурации и утилизации ненужного 
оборудования по  мере неизбежного совершен-
ствования технологий освоения Луны. 

Авторы благодарны инженерам А.Г. Конко-
ловичу и  Д.Н. Кузьменко за  творческий вклад 
в  разработку отдельных технических решений 
проекта.

Авторы благодарны ГЕОХИ РАН 
им. В.И. Вернадского за финансовую поддержку 
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